Skip to main content
Log in

Spatial-temporal spectroscopy characterizations and electronic structure of methylammonium perovskites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Using time-resolved laser-scanning confocal microscopy and ultrafast optical pump/THz probe spectroscopy, we measure photoluminescence (PL) and THz-conductivity in perovskite micro-crystals and films. PL quenching and lifetime variations occur from local heterogeneity. Ultrafast THz-spectra measure sharp quantum transitions from excitonic Rydberg states, providing weakly bound excitons with a binding energy of ~13.5 meV at low temperatures. Ab-initio electronic structure calculations give a direct band gap of 1.64 eV, a dielectric constant of ~18, heavy electrons, and light holes, resulting in weakly bound excitons, consistent with the binding energies from the experiment. The complementary spectroscopy and simulations reveal fundamental insights into perovskite light-matter interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, and Y. Yang: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  3. N.G. Park: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  CAS  Google Scholar 

  4. U. Bach: Perovskite solar cells: Brighter pieces of the puzzle. Nat. Chem. 7, 616–617 (2015).

    Article  CAS  Google Scholar 

  5. M. Sessolo and H.J. Bolink: Perovskite solar cells join the major league. Science 350, 917 (2015).

    Article  CAS  Google Scholar 

  6. J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, and N.G. Park: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotech. 9, 927–932 (2014).

    Article  CAS  Google Scholar 

  7. J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S. Il Seok: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  CAS  Google Scholar 

  8. M. Saliba, T. Matsui, J-Y. Seo, K. Domanski, J-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  Google Scholar 

  9. X. Li, D. Bi, C. Yi, J-D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, and M. Grätzel: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    Article  CAS  Google Scholar 

  10. P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, and H.J. Snaith: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013).

    Article  CAS  Google Scholar 

  11. H. Abbas, R. Kottokkaran, M. Samiee, L. Zhang, B. Ganapathy, A. Kitahara, M. Noack, and V.L. Dalal: High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 3, 016105 (2015).

    Article  CAS  Google Scholar 

  12. S.D. Stranks and H.J. Snaith: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  13. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  14. Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, and Q. Gong: Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin films. Sci. Rep. 5, 14485 (2015).

    Article  CAS  Google Scholar 

  15. S. Liu, L. Wang, W-C. Lin, S. Sucharitakul, C. Burda, and X.P.A. Gao: Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Lett. 16, 7925–7929 (2016).

    Article  CAS  Google Scholar 

  16. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang: Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  17. C. Li, S. Tscheuschner, F. Paulus, P.E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, and S. Huettner: Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 2446–2454 (2016).

    Article  CAS  Google Scholar 

  18. S. Meloni, T. Moehl, W. Tress, M. Franckevičius, M. Saliba, Y.H. Lee, P. Cao, M.K. Nazeeruddin, S.M. Zakeeruddin, U. Rothlisberger, and M. Graetzel: Ionic polarization-induced current–voltage hysteresis in CH3NH3PbI3 perovskite solar cells. Nat. Commun. 7, 10334(1)–9 (2016).

    Article  CAS  Google Scholar 

  19. Y. Wang, T. Gould, J.F. Dobson, H. Zhang, H. Yang, X. Yaob, and H. Zhao: Density functional theory analysis of structural and electronic properties of orthorhombic perovskite. Phys. Chem. Chem. Phys. 16, 1424–1429 (2014).

    Article  CAS  Google Scholar 

  20. R. Wang, C. Wu, Y. Hu, J. Li, P. Shen, Q. Wang, L. Liao, L. Liu, and S. Duhm: CH3NH3PbI3–x Clx under different fabrication strategies: electronic structures and energy-level alignment with an organic hole transport material. ACS Appl. Mater. Interfaces 9, 7859–7865 (2017).

    Article  CAS  Google Scholar 

  21. J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama: Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc. Chem. Res. 49, 554–561 (2016).

    Article  CAS  Google Scholar 

  22. Y. Yamada, T. Yamada, L.Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, and Y. Kanemitsu: Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 10456–10459 (2015).

    Article  CAS  Google Scholar 

  23. R. Lindblad, D. Bi, B-W. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E.M.J. Johansson, and H. Rensmo: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014).

    Article  CAS  Google Scholar 

  24. W. Geng, C-J. Tong, J. Liu, W. Zhu, W-M. Lau, and L-M. Liua: Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci. Rep. 6, 20131(1)–8 (2016).

    Google Scholar 

  25. M. Abdi-Jalebi, M.I. Dar, A. Sadhanala, S.P. Senanayak, M. Franckevičius, N. Arora, Y. Hu, M.K. Nazeeruddin, S.M. Zakeeruddin, and M. Grätzel: Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).

    Article  CAS  Google Scholar 

  26. T. Hata, G. Giorgi, and K. Yamashita: The effects of the organic–inorganic interactions on the thermal transport properties of CH3NH3PbI3. Nano Lett. 16, 2749–2753 (2016).

    Article  CAS  Google Scholar 

  27. Y. Jiang, A.M. Soufiani, A. Gentle, F. Huang, A. Ho-Baillie, and M.A. Green: Optical properties of photovoltaic organic–inorganic lead halide perovskites. Appl. Phys. Lett. 108, 061905(1)–5 (2016).

    Google Scholar 

  28. Y. Zhang, Y. Wang, Z.Q. Xu, J. Liu, J. Song, Y. Xue, Z. Wang, J. Zheng, L. Jigang, C. Zheng, F. Huang, B. Sun, Y.B. Cheng, and Q. Bao: Reversible structural swell–shrink and recoverable optical properties in hybrid inorganic–organic perovskite. ACS Nano 10, 7031–7038 (2016).

    Article  CAS  Google Scholar 

  29. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, and F.D. Angelis: Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155–163 (2016).

    Article  CAS  Google Scholar 

  30. M. Lai, Q. Kong, C.G. Bischak, Y. Yu, L. Dou, S.W. Eaton, N.S. Ginsberg, and P. Yang: Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10, 1107–1114 (2017).

    Article  CAS  Google Scholar 

  31. D.W. deQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperson, M.E. Ziffer, H.J. Snaith, and D.S. Ginger: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  CAS  Google Scholar 

  32. L. Luo, L. Men, Z. Liu, Y. Mudryk, X. Zhao, Y. Yao, J.M. Park, R. Shinar, J. Shinar, K.M. Ho, I.E. Perakis, J. Vela, and J. Wang: Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nat. Commun. 8, 15565(1)–8 (2017).

    Google Scholar 

  33. V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Khandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, and A. Petrozza: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 35869(1)–6 (2014).

    Article  CAS  Google Scholar 

  34. W. Kong, Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, and H. Wu: Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 16405–16411 (2015).

    Article  CAS  Google Scholar 

  35. P. Fan, D. Gu, G-X. Liang, J-T. Luo, J-L. Chen, Z-H. Zheng, and D-P. Zhang: High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910(1)–9 (2016).

    Google Scholar 

  36. C. La-o-vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y.M. Lam, J-X. Zhu, R.A. Marcus, and M-E. Michel-Beyerle: Phonon mode transformation across the orthohombic–tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: a terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett. 7, 1–6 (2016).

    Article  CAS  Google Scholar 

  37. C. La-o-vorakiat, T. Slim, J. Kadro, M-T. Khuc, R. Haselsberger, L. Cheng, H. Xia, G.G. Gurzadyan, H. Su, Y.M. Lam, R.A. Marcus, M-E. Michel-Beyerle, and E.E.M. Chia: Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun. 6, 7903(1)–7 (2015).

    Article  CAS  Google Scholar 

  38. Z. Wu and R.E. Cohen: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116(1)–6 (2006).

    Google Scholar 

  39. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  40. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: WIEN2k_14.2: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. ISBN 3-9501031-1-2 (Techn. Universitä Wien, Austria, 2001).

    Google Scholar 

  41. F. Tran and P. Blaha: Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  42. X. Zhu, H. Su, R.A. Marcus, and M.E. Michel-Beyerle: Computed and experimental absorption spectra of the perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 3061–3065 (2014).

    Article  CAS  Google Scholar 

  43. J. Feng, and B. Xiao: Crystal structures, optical propoerties and effective mass tensors of CH3NH3PBX3 (x=I and Br) phases predicted from HSEO6. J. Phys. Chem. Lett 5, 1278–1282 (2014).

    Article  CAS  Google Scholar 

  44. W. Geng, L. Zhang, Y-N. Zhang, and W-M. Lau: First principles study of iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J. Phys. Chem. C 118, 19565–19571 (2014).

    Article  CAS  Google Scholar 

  45. J.M. Ziman: Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).

    Book  Google Scholar 

  46. M. Saimee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502(1)–4 (2014).

    Google Scholar 

  47. X.Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci: Lead iodide perovskite light-emitting field-effect Transistor. Nat. Commun. 6, 8383–8389 (2015).

    Article  CAS  Google Scholar 

  48. P. Umari, E. Mosconi, and F. De Angelis: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467(1)–7 (2014).

    Google Scholar 

  49. L. V. Keldysh: Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658–661 (1979).

    Google Scholar 

Download references

Acknowledgment

This paper was supported in part (R.B., L.L., Z.L., D.C., J.M., J. S., J.W.) by the US DOE Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358. The research used resources at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231. KCB acknowledges DST for providing him financial support through SERB-NPDF through Letter No. PDF/2017/002876. The authors also acknowledge the computing resources provided by the Inter-University Accelerator Center, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rana Biswas or Jigang Wang.

Additional information

These authors contributed equally to this work.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.114

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Bhamu, K.C., Luo, L. et al. Spatial-temporal spectroscopy characterizations and electronic structure of methylammonium perovskites. MRS Communications 8, 961–969 (2018). https://doi.org/10.1557/mrc.2018.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.114

Navigation