Skip to main content
Log in

Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanosecond resolution visible (633 nm) and near-infrared (1152 nm) reflectivity measurements have been used, together with transmission electronmicroscopy (TEM), to study pulsed KrF (248 nm) laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) silicon layers. The measurements cover the entire laser energy density (El) range between the onset of melting (∼ 0.12 J/cm2) and the completion of epitaxial crystallization (∼1.1 J/cm2). Four distinct El-regimes of melting and solidification are found for the 410-nm thick a-Si layers. For El > 0.25 J/cm2, the time of formation, velocity and final depth of “explosively” propagating undercooled liquid layers were measured in specimens that had been uniformly implanted with Si, Ge, or Cu. TEM shows that the “fine-grained polycrystalline Si” produced by explosive crystallization (XC) actually contains large numbers of disk-shaped Si flakes that have largely amorphous centers and are visible only in plan view. The optical and TEM measurements suggest (1) that flakes are the crystallization events that initiate XC, and (2) that lateral heat flow (parallel to the sample surface) must be taken into account in order to understand flake formation. Results of new two-dimensional (2-D) model calculations of heat flow and solidification are presented. These calculations confirm the importance of 2-D heat flow and crystallite growth early in the solidification process. For 0.3 4 < El > 1.0 J/cm2, pronounced changes in both the shape and the duration of the reflectivity signals provide information about the growth of polycrystalline grains; this information can be correlated with post-irradiation plan and cross-section view TEM microstructural measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Lowndes, R. F. Wood, and J. Narayan, Phys. Rev. Lett. 52, 561 (1984).

    Article  CAS  Google Scholar 

  2. D. H. Lowndes, G. E. Jellison, Jr., R. F. Wood, and R. Carpenter, Proc. 17th Int. Conf. on Physics of Semiconductors (Springer-Verlag, 1985) p. 1497.

  3. D. H. Lowndes, G. E. Jellison, Jr., R. F. Wood, and S. J. Pennycook, and R. F. Carpenter, Mat. Res. Soc. Symp. Proc. 35, 101 (1985). Note: The 190-nm a-1ayer thickness mentioned in the caption to Fig. 4 of this reference (and in its discussion in the text) is incorrect; the correct thickness was 440 nm.

    Article  CAS  Google Scholar 

  4. S. U. Campisano, D. C. Jacobson, J. M. Poate, A. G. Cullis, and N. G. Chew, Appl. Phys. Lett. 45, 1217 (1984).

    Article  Google Scholar 

  5. S. U. Campisano, D. C. Jacobson, J. M. Poate, A. G. Cullis, and N. G. Chew, Appl. Phys. Lett. 46, 846 (1985).

    Article  CAS  Google Scholar 

  6. J. Narayan, J. Vac. Sci. Technol. A4, 61 (1986).

    Article  Google Scholar 

  7. P. S. Peercy, J. M. Poate, M. O. Thompson, and J. T. Tsao, Appl. Phys. Lett. 48, 1651 (1986).

    Article  CAS  Google Scholar 

  8. P. S. Peercy, M. O. Thompson, J. Y. Tsao, and J. M. Poate, Proc. Mater. Res. Soc. 51, 125 (1986). See also M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, and D. C. Jacobson, Phys. Rev. Lett. 50, 896 (1983).

    Article  CAS  Google Scholar 

  9. R. F. Wood, D. H. Lowndes, and J. Narayan, Appl. Phys. Lett. 44, 770 (1984).

    Article  CAS  Google Scholar 

  10. J. Narayan and C. W. White, Appl. Phys. Lett. 44, 35 (1984).

    Article  CAS  Google Scholar 

  11. J.J.P. Bruines, R.P.M. van Hal, B. H. Koek, M.P.A. Viegers, and H.M.J. Boots, Mat. Res. Soc. Symp. Proc. 74, 91 (1987).

    Article  CAS  Google Scholar 

  12. M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, N. G. Chew, Phys. Rev. Lett. 52, 2360 1984).

    Article  CAS  Google Scholar 

  13. D. H. Lowndes, G. E. Jellison, Jr., S. J. Pennycook, S. P. Withrow, D. N. Mashburn, and R. F. Wood, Mat. Res. Soc. Symp. Proc. 51, 131 (1986).

    Article  CAS  Google Scholar 

  14. O. H. Lowndes, G. E. Jellison, Jr., S. J. Pennycook, S. P. Withrow, and D. N. Mashburn, Appl. Phys. Lett. 48, 1389 (1986).

    Article  CAS  Google Scholar 

  15. D. H. Lowndes, S. J. Pennycook, G. E. Jellison, Jr., S. P. Withrow, and D. N. Mashburn, J. Mat. Res. 2, 648 (1987).

    Article  CAS  Google Scholar 

  16. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).

    Article  CAS  Google Scholar 

  17. H. C. Webber, A. G. Cullis, and N. G. Chew, Appl. Phys. Lett. 43, 669 (1983).

    Article  CAS  Google Scholar 

  18. T. Papa, F. Scudieri, M. Marinelli, U. Zammit, and G. Cembali, private communication.

  19. H. J. Goldsmit, M. M. Kaila, and G. L. Paul, Phys. Stat. Sol. (a) 76, K31 (1983).

    Article  Google Scholar 

  20. C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058 (1964).

    Article  Google Scholar 

  21. R. F. Wood and G. A. Geist, Phys. Rev. Lett. 57, 873 (1986).

    Article  CAS  Google Scholar 

  22. See R. F. Wood and G. A. Geist, Phys. Rev. Β 34, 2606 (1986).

    Article  CAS  Google Scholar 

  23. R. F. Wood et al, in preparation.

  24. S. J. Pennycook and J. Narayan, Appl. Phys. Lett. 45, 385 (1984).

    Article  CAS  Google Scholar 

  25. See B. C. Larson, J. Z. Tischler, and D. M. Mills, J. Mater. Res. 1, 144 (1986) and G. J. Galvin, J. W. Mayer and P. S. Peercy, Appl. Phys. Lett. 46, 644 (1985)

    Article  CAS  Google Scholar 

  26. D. H. Lowndes and S. J. Pennycook, submitted for publication.

  27. J. Y. Tsao and P. S. Peercy, Phys. Rev. Lett. 58, 2782 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowndes, D.H., Pennycook, S.J., Wood, R.F. et al. Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon. MRS Online Proceedings Library 100, 489 (1987). https://doi.org/10.1557/PROC-100-489

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-100-489

Navigation