Skip to main content
Log in

Synthesis and capacitive properties of carbonaceous sphere@MnO2 rattle-type hollow structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbonaceous sphere@MnO2 rattle-type hollow spheres were synthesized under mild experimental conditions. The as-prepared hollow structures were characterized using scanning electron microscope, transmission electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and nitrogen adsorption techniques. The characterization data showed the formation of rattle-type hollow structures with a mesoporous MnO2 shell and a carbonaceous sphere core. The composition and shell thickness of the hollow spheres can be controlled experimentally. The capacitive performance of the hollow structures was evaluated by using both cycle voltammetry and charge-discharge methods. The results demonstrated a specific capacitance as high as 184 F/g at a current density of 125 mA/g. The good electrocapacitive performance resulted from the mesoporous structure and high surface area of the MnO2-based hollow spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Zhang, X.S. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev.382520 (2009)

    Article  CAS  Google Scholar 

  2. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett.83498 (2008)

    Article  CAS  Google Scholar 

  3. A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, W. van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.4366 (2005)

    Article  CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater.7845 (2008)

    Article  CAS  Google Scholar 

  5. V.V.N. Obreja: On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-A review. Physica E402596 (2008)

    Article  CAS  Google Scholar 

  6. Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang: Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy344889 (2009)

    Article  CAS  Google Scholar 

  7. J.P. Zheng, P.J. Cygan, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc.1422699 (1995)

    Article  CAS  Google Scholar 

  8. M. Toupin, T. Brousse, D. Belanger: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.163184 (2004)

    Article  CAS  Google Scholar 

  9. J. Chen, F.Y. Cheng: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res.42713 (2009)

    Article  CAS  Google Scholar 

  10. H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem.144220 (1999)

    Article  CAS  Google Scholar 

  11. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc.153A2171 (2006)

    Article  CAS  Google Scholar 

  12. S. Devaraj, N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C1124406 (2008)

    Article  CAS  Google Scholar 

  13. X.W. Lou, L.A. Archer, Z.C. Yang: Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater.203987 (2008)

    Article  CAS  Google Scholar 

  14. W. Xiao, X. Hui, F. Jerry-Ying-His, L. Li: Electrochemical synthesis and supercapacitive properties of ɛ-MnO2 with porous/nanoflaky hierarchical architectures. J. Electrochem. Soc.156A627 (2009)

    Article  CAS  Google Scholar 

  15. B.X. Li, G.X. Rong, Y. Xie, L.F. Huang, C.Q. Feng: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem.456404 (2006)

    Article  CAS  Google Scholar 

  16. M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C11119141 (2007)

    Article  CAS  Google Scholar 

  17. P. Yu, X. Zhang, D.L. Wang, L. Wang, Y.W. Ma: Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des.9528 (2008)

    Article  Google Scholar 

  18. X.M. Sun, Y.D. Li: Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed.43597 (2004)

    Article  Google Scholar 

  19. M. Sevilla, A.B. Fuertes: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J.154195 (2009)

    Article  CAS  Google Scholar 

  20. M. Sevilla, A.B. Fuertes: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon472281 (2009)

    Article  CAS  Google Scholar 

  21. G. Jia, M. Yang, Y.H. Song, H.P. You, H.J. Zhang: General and facile method to prepare uniform Y2O3:Eu hollow microspheres. Cryst. Growth Des.9301 (2008)

    Article  Google Scholar 

  22. V. Subramanian, H.W. Zhu, B.Q. Wei: Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices. Pure Appl. Chem.802327 (2008)

    Article  CAS  Google Scholar 

  23. X.M. Sun, J.F. Liu, Y.D. Li: Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J.122039 (2006)

    Article  CAS  Google Scholar 

  24. A.C. Lua, T. Yang: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci.274594 (2004)

    Article  CAS  Google Scholar 

  25. J.P. Ni, W.C. Lu, L.M. Zhang, B.H. Yue, X.F. Shang, Y. Lv: Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J. Phys. Chem. C11354 (2009)

    Article  CAS  Google Scholar 

  26. J.K. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben Handbook of X-ray Photoelectron Spectroscopy(Physical Electronics Inc, Eden Prairie, MN 1995)

    Google Scholar 

  27. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett.7281 (2007)

    Article  CAS  Google Scholar 

  28. N. Shimodaira, A. Masui: Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys.92902 (2002)

    Article  CAS  Google Scholar 

  29. J.T. Sampanthar, J. Dou, G.G. Joo, E. Widjaja, L.Q.H. Eunice: Template-free low temperature hydrothermal synthesis and characterization of rod-shaped manganese oxyhydroxides and manganese oxides. Nanotechology7025601 (2007)

    Article  Google Scholar 

  30. D. Portehault, S. Cassaignon, N. Nassif, E. Baudrin, J-P. Jolivet: A core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew. Chem. Int. Ed.476441 (2008)

    Article  CAS  Google Scholar 

  31. D. Portehault, S. Cassaignon, E. Baudrin, J-P. Jolivet: Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4−/Mn2+ reaction. J. Mater. Chem.192407 (2009)

    Article  CAS  Google Scholar 

  32. D. Portehault, S. Cassaignon, E. Baudrin, J-P. Jolivet: Synthesis of a manganese oxide nanocomposite through heteroepitaxy in aqueous medium. Chem. Commun. (Camb.)674 (2009)

    Google Scholar 

  33. D. Portehault, S. Cassaignon, E. Baudrin, J-P. Jolivet: Design of hierarchical core-corona architectures of layered manganese oxides by aqueous precipitation. Chem. Mater.206140 (2008)

    Article  CAS  Google Scholar 

  34. L.C. Zhang, L.P. Kang, H. Lv, Z.K. Su: Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. J. Mater. Res.23780 (2008)

    Article  CAS  Google Scholar 

  35. V. Barranco, F. Pico, J. Ibaňez, M.A. Lillo-Rodenas, A. Linares-Solano, M. Kimura, A. Oya, R.M. Rojas, J.M. Amarilla, J.M. Rojo: Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochim. Acta547452 (2009)

    Article  CAS  Google Scholar 

  36. F. Pico, E. Morales, J.A. Fernandez, T.A. Centeno, J. Ibaňez, R.M. Rojas, J.M. Amarilla, J.M. Rojo: Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes. Electrochim. Acta542239 (2009)

    Article  CAS  Google Scholar 

  37. V. Subramanian, H.W. Zhu, R. Vajtai, P.M. Ajayan, B.Q. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B10920207 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Ma, J., Jiang, J. et al. Synthesis and capacitive properties of carbonaceous sphere@MnO2 rattle-type hollow structures. Journal of Materials Research 25, 1476–1484 (2010). https://doi.org/10.1557/JMR.2010.0189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0189

Navigation