Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices

  • V. Subramanian , Hongwei Zhu and Bingqing Wei

Abstract

Manganese oxides have been synthesized by a variety of techniques in different nanostructures and studied for their properties as electrode materials in two different storage applications, supercapacitors (SCs) and Li-ion batteries. The composites involving carbon nanotubes (CNTs) and manganese oxides were also prepared by a simple room-temperature method and evaluated as electrode materials in the above applications. The synthesis of nanostructured manganese oxides was carried out by simple soft chemical methods without any structure directing agents or surfactants. The prepared materials were well characterized using different analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), surface area studies, etc. The electrochemical properties of the nanostructured manganese oxides and their composites were studied using cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopic (EIS) studies. The influence of structural/surface properties on the electrochemical performance of the synthesized manganese oxides is reviewed.


Conference

International Symposium on Novel Materials and Their Synthesis (NMS-III) and the 17th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XVII), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 3rd, Shanghai, China, 2007-10-17–2007-10-21


References

1. B. E. Conway. Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, Dordrecht (1999).Search in Google Scholar

2. doi:10.1016/S0008-6223(00)00183-4, E. Frackowiak, F. Beguin. Carbon 39, 937 (2001).Search in Google Scholar

3. doi:10.1149/1.1382589, M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, M. S. Dresselhaus. J. Electrochem. Soc. 148, A910 (2001).Search in Google Scholar

4. doi:10.1149/1.1543948, P. L. Taberna, P. Simon, J. F. Fauvarque. J. Electrochem. Soc. 150, A292 (2003).Search in Google Scholar

5. doi:10.1149/1.1409546, F. Bonhomme, J. C. Lassegues, L. Servant. J. Electrochem. Soc. 148, E450 (2001).Search in Google Scholar

6. doi:10.1149/1.2050077, J. P. Zheng, P. J. Cygan, T. R. Jow. J. Electrochem. Soc. 142, 2699 (1995).Search in Google Scholar

7. doi:10.1149/1.1836396, K. C. Liu, M. A. Anderson. J. Electrochem. Soc. 143, 124 (1996).Search in Google Scholar

8. doi:10.1016/S0378-7753(01)00484-0, Y. S. Yoon, W. I. Cho, J. H. Lim, D. J. Choi. J. Power Sources 101, 126 (2001).Search in Google Scholar

9. doi:10.1016/S0378-7753(96)02474-3, B. E. Conway, V. Briss, J. Wojtowicz. J. Power Sources 66, 1 (1997).Search in Google Scholar

10. doi:10.1149/1.1838920, C. Lin, J. A. Ritter, B. N. Popov. J. Electrochem. Soc. 145, 4097 (1998).Search in Google Scholar

11. doi:10.1149/1.1541675, H. Kim, B. N. Popov. J. Electrochem. Soc. 150, D56 (2003).Search in Google Scholar

12. doi:10.1149/1.1511188, Y. U. Jeong, A. Manthiram. J. Electrochem. Soc. 149, A1419 (2002).Search in Google Scholar

13. doi:10.1006/jssc.1998.8128, H. Y. Lee, J. B. Goodenough. J. Solid State Chem. 144, 220 (1999).Search in Google Scholar

14. doi:10.1021/cm020408q, M. Toupin, T. Brousse, D. Belanger. Chem. Mater. 14, 3946 (2002).Search in Google Scholar

15. doi:10.1021/cm049649j, M. Toupin, T. Brousse, D. Belanger. Chem. Mater. 16, 3184 (2004).Search in Google Scholar

16. doi:10.1016/S0378-7753(03)00600-1, R. N. Reddy, R. G. Reddy. J. Power Sources 124, 330 (2003).Search in Google Scholar

17. doi:10.1016/j.jpowsour.2003.12.054, R. N. Reddy, R. G. Reddy. J. Power Sources 132, 315 (2004).Search in Google Scholar

18. T. Nagaura, K. Tazawa. Prog. Batteries Sol. Cells 9, 20 (1990).Search in Google Scholar

19. doi:10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z, M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak. Adv. Mater. 10, 725 (1998).Search in Google Scholar

20. doi:10.1126/science.276.5317.1395, Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Science 276, 1395 (1997).Search in Google Scholar

21. doi:10.1126/science.1071079, D. C. S. Souza, V. Pralong, A. J. Jacobson, L. F. Nazar. Science 296, 2012 (2002).Search in Google Scholar

22. doi:10.1002/anie.200454080, E. Kim, D. Son, T. Kim, J. Cho, B. Park, K. S. Ryu, S. H. Chang. Angew. Chem., Int. Ed. 43, 5987 (2004).Search in Google Scholar

23. doi:10.1002/anie.200351203, M. Yoshio, H. Wang, K. Fukuda. Angew. Chem., Int. Ed. 42, 4203 (2003).Search in Google Scholar

24. doi:10.1149/1.2086855, R. Fong, U. Vonsacken, J. R. Dahn. J. Electrochem. Soc. 137, 2009 (1990).Search in Google Scholar

25. doi:10.1126/science.270.5236.590, J. R. Dahn, T. Zheng, Y. H. Liu, J. S. Xue. Science 270, 590 (1995).Search in Google Scholar

26. G. Maurin, F. Henn. Encyclopedia of Nanoscience and Nanotechnology, Vol. 2, p. 773, American Scientific Publishers, Los Angeles (2004).Search in Google Scholar

27. doi:10.1002/smll.200400137, J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, F. S. Sheu. Small 1, 560 (2005).Search in Google Scholar

28. doi:10.1149/1.1576222, J. H. Park, J. M. Ko, O. O. Park. J. Electrochem. Soc. 150, A864 (2003).Search in Google Scholar

29. doi:10.1149/1.1870793, C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin, T. Y. Tseng. J. Electrochem. Soc. 152, A716 (2005).Search in Google Scholar

30. doi:10.1007/s10008-003-0468-7, Y. K. Zhou, B. L. He, F. B. Zhang, H. L. Li. J. Solid State Electrochem. 8, 482 (2004).Search in Google Scholar

31. doi:10.1002/adma.200306592, R. Ma, Y. Bando, L. Zhang, T. Sasaki. Adv. Mater. 16, 918 (2004).Search in Google Scholar

32. doi:10.1149/1.2422749, Q. Fan, M. Stanley Whittingham. Electrochem. Solid-State Lett. 10, A48 (2007).Search in Google Scholar

33. doi:10.1016/j.elecom.2005.12.014, M. S. Wu, P. J. Chiang. Electrochem. Commun. 8, 383 (2006).Search in Google Scholar

34. doi:10.1021/jp0543330, V. Subramanian, H. W. Zhu, R. A. Vajitai, P. M. Ajayan, B. Q. Wei. J. Phys. Chem. B 109, 20207 (2005).Search in Google Scholar

35. doi:10.1039/b111723h, X. Wang, Y. Li. Chem. Commun. 764 (2002).Search in Google Scholar

36. doi:10.1016/j.cplett.2008.01.042, V. Subramanian, H. W. Zhu, B. Q. Wei. Chem. Phys. Lett. 453, 242 (2008).Search in Google Scholar

37. doi:10.1016/j.elecom.2006.02.027, V. Subramanian, H. W. Zhu, B. Q. Wei. Electrochem. Commun. 8, 827 (2006).Search in Google Scholar

38. doi:10.1021/jp057080j, V. Subramanian, H. W. Zhu, B. Q. Wei. J. Phys. Chem. B 110, 7178 (2006).Search in Google Scholar

39. doi:10.1149/1.1834913, E. R. Pinero, V. Khomenko, E. Frackowiak, F. Beguin. J. Electrochem. Soc. 152, A229 (2005).Search in Google Scholar

40. doi:10.1007/s10853-005-6523-2, M. G. Deng, B. C. Yang, Z. A. Zhang, Y. D. Hu. J. Mater. Sci. 40, 1017 (2005).Search in Google Scholar

41. doi:10.1038/35035045, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nature 407, 496 (2000).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880112327/html
Scroll to top button