Skip to main content

Advertisement

Log in

Recent developments in transition metal-based nanomaterials for supercapacitor applications

  • Review
  • FOCUS ISSUE: Transition Metal-based Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the recent years the demand of high energy density, high power density energy storage device with long cycle stability increased because of their vast applications from portable electronics devices to power tolls and hybrid electric vehicles. Also, the developments in renewable energy sources also created immediate demand for high energy density energy storage devices. Supercapacitors are found to be suitable to fulfill the current demand of energy storage devices. Transition metal nanomaterials are considered to store high charge because of their large surface area and variable oxidation states. In the present review, we discussed the recent advances in the area of supercapacitors using transition metal oxides, nitride, sulfides, diselenides, phosphides, and ferrites. The effect of surface morphology, synthesis process, and various doping/composites on specific capacitance of supercapacitors were discussed in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  2. X. Wang, G. Pawar, Y. Li, X. Ren, M. Zhang, B. Lu, A. Banerjee, P. Liu, E.J. Dufek, J.-G. Zhang, Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 19(12), 1339–1345 (2020). https://doi.org/10.1038/s41563-020-0729-1

    Article  CAS  Google Scholar 

  3. Y. Liu, X. Li, W. Shen, Y. Dai, W. Kou, W. Zheng, X. Jiang, G. He, Multishelled transition metal-based microspheres: synthesis and applications for batteries and supercapacitors. Small 15(32), 1804737 (2019). https://doi.org/10.1002/smll.201804737

    Article  CAS  Google Scholar 

  4. M.D. Hager, B. Esser, X. Feng, W. Schuhmann, P. Theato, U.S. Schubert, Polymer-based batteries—flexible and thin energy storage systems. Adv. Mater. 32(39), 2000587 (2020). https://doi.org/10.1002/adma.202000587

    Article  CAS  Google Scholar 

  5. H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu, Z. Zhu, L. Huang, L. Huang, J. Zhou, Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80%. Small 18(4), 2106441 (2022). https://doi.org/10.1002/smll.202106441

    Article  CAS  Google Scholar 

  6. Y. Zhou, C.H. Wang, W. Lu, L. Dai, Fiber-shaped energy-storage devices: recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 32(5), 2070037 (2020). https://doi.org/10.1002/adma.202070037

    Article  Google Scholar 

  7. S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, Microscale energy-storage devices: the road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1970351 (2019). https://doi.org/10.1002/adma.201970351

    Article  Google Scholar 

  8. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014). https://doi.org/10.1002/adma.201304137

    Article  CAS  Google Scholar 

  9. F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31(16), 1806510 (2019). https://doi.org/10.1002/adma.201806510

    Article  CAS  Google Scholar 

  10. A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552

    Article  CAS  Google Scholar 

  11. S. Yang, S. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023

    Article  CAS  Google Scholar 

  12. Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Materials 18, 447–455 (2019). https://doi.org/10.1016/j.ensm.2018.08.006

    Article  Google Scholar 

  13. R. Dubey, V. Guruviah, Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4), 1419–1445 (2019). https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  14. L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S.X. Dou, J. Liang, Photo-rechargeable batteries and supercapacitors: Critical roles of carbon-based functional materials. Carbon Energy 3(2), 225–252 (2021). https://doi.org/10.1002/cey2.105

    Article  CAS  Google Scholar 

  15. A. Riaz, M.R. Sarker, M.H.M. Saad, R. Mohamed, Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: challenges and recommendations. Sensors (Basel) (2021). https://doi.org/10.3390/s21155041

    Article  Google Scholar 

  16. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. A 5(25), 12653–12672 (2017). https://doi.org/10.1039/C7TA00863E

    Article  CAS  Google Scholar 

  17. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  18. A. Berrueta, A. Ursúa, I. San Martín, A. Eftekhari, P. Sanchis, Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access 7, 50869–50896 (2019). https://doi.org/10.1109/ACCESS.2019.2908558

    Article  Google Scholar 

  19. J. Wang, J. Wang, Z. Kong, K. Lv, C. Teng, Y. Zhu, Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 29(45), 1703044 (2017). https://doi.org/10.1002/adma.201703044

    Article  CAS  Google Scholar 

  20. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  21. Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077

    Article  CAS  Google Scholar 

  22. K. Ren, Z. Liu, T. Wei, Z. Fan, Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 13(1), 1–32 (2021). https://doi.org/10.1007/s40820-021-00642-2

    Article  CAS  Google Scholar 

  23. P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran, K.-C. Lin, Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind. Eng. Chem. Res. 59(14), 6347–6374 (2020). https://doi.org/10.1021/acs.iecr.9b06010

    Article  CAS  Google Scholar 

  24. K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8(1), 1–11 (2017). https://doi.org/10.1038/ncomms14264

    Article  Google Scholar 

  25. L. Zheng, J. Song, X. Ye, Y. Wang, X. Shi, H. Zheng, Construction of self-supported hierarchical NiCo-S nanosheet arrays for supercapacitors with ultrahigh specific capacitance. Nanoscale 12(25), 13811–13821 (2020). https://doi.org/10.1039/D0NR02976A

    Article  CAS  Google Scholar 

  26. P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8(15), 1703259 (2018)

    Article  Google Scholar 

  27. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A

    Article  CAS  Google Scholar 

  28. H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Materials 28, 122–145 (2020). https://doi.org/10.1016/j.ensm.2020.03.003

    Article  Google Scholar 

  29. L. Hou, W. Yang, R. Li, X. Xu, P. Wang, B. Deng, F. Yang, Y. Li, Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage. Chem. Eng. J. 396, 125323 (2020). https://doi.org/10.1016/j.cej.2020.125323

    Article  CAS  Google Scholar 

  30. Y. Son, M. Park, Y. Son, J.-S. Lee, J.-H. Jang, Y. Kim, J. Cho, Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries. Nano Lett. 14(2), 1005–1010 (2014). https://doi.org/10.1021/nl404466v

    Article  CAS  Google Scholar 

  31. R. Mo, Z. Lei, K. Sun, D. Rooney, Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 26(13), 2084–2088 (2014). https://doi.org/10.1002/adma.201304338

    Article  CAS  Google Scholar 

  32. H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.V. Savilov, S.M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Func. Mater. 25(4), 627–635 (2015). https://doi.org/10.1002/adfm.201403554

    Article  CAS  Google Scholar 

  33. H.M. Jeong, K.M. Choi, T. Cheng, D.K. Lee, R. Zhou, I.W. Ock, D.J. Milliron, W.A. Goddard, J.K. Kang, Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life. Proc. Natl. Acad. Sci. U.S.A. 112(26), 7914–7919 (2015). https://doi.org/10.1073/pnas.1503546112

    Article  CAS  Google Scholar 

  34. N. Agnihotri, P. Sen, A. De, M. Mukherjee, Hierarchically designed PEDOT encapsulated graphene-MnO2 nanocomposite as supercapacitors. Mater. Res. Bull. 88, 218–225 (2017). https://doi.org/10.1016/j.materresbull.2016.12.036

    Article  CAS  Google Scholar 

  35. G. Wang, Z. Jin, Q. Guo, Ordered self-supporting NiV LDHs@ P-nickel foam nano-array as high-performance supercapacitor electrode. J. Colloid Interface Sci. 583, 1–12 (2021). https://doi.org/10.1016/j.jcis.2020.08.127

    Article  CAS  Google Scholar 

  36. G. Zhang, T. Wu, H. Zhou, H. Jin, K. Liu, Y. Luo, H. Jiang, K. Huang, L. Huang, J. Zhou, Rich alkali ions preintercalated vanadium oxides for durable and fast zinc-ion storage. ACS Energy Lett. 6(6), 2111–2120 (2021). https://doi.org/10.1021/acsenergylett.1c00625

    Article  CAS  Google Scholar 

  37. W. Wu, L. Yang, S. Chen, Y. Shao, L. Jing, G. Zhao, H. Wei, Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Adv. 5(111), 91645–91653 (2015). https://doi.org/10.1039/C5RA17036B

    Article  CAS  Google Scholar 

  38. Z. Wang, Y. Long, D. Cao, D. Han, F. Gu, A high-performance flexible supercapacitor based on hierarchical Co3O4-SnO@SnO2 nanostructures. Electrochim. Acta 307, 341–350 (2019). https://doi.org/10.1016/j.electacta.2019.03.230

    Article  CAS  Google Scholar 

  39. M. Chaudhary, M. Singh, A. Kumar, Prachi, Y.K. Gautam, A.K. Malik, Y. Kumar, and B.P. Singh, Experimental investigation of Co and Fe-Doped CuO nanostructured electrode material for remarkable electrochemical performance. Ceram. Int. 47(2), 2094–2106. (2021). https://doi.org/10.1016/j.ceramint.2020.09.042.

  40. J. Wan, X. Yao, X. Gao, X. Xiao, T. Li, J. Wu, W. Sun, Z. Hu, H. Yu, L. Huang, M. Liu, J. Zhou, Microwave combustion for modification of transition metal oxides. Adv. Func. Mater. 26(40), 7263–7270 (2016). https://doi.org/10.1002/adfm.201603125

    Article  CAS  Google Scholar 

  41. A.C. Nwanya, D. Obi, K.I. Ozoemena, R.U. Osuji, C. Awada, A. Ruediger, M. Maaza, F. Rosei, F.I. Ezema, Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim. Acta 198, 220–230 (2016). https://doi.org/10.1016/j.electacta.2016.03.064

    Article  CAS  Google Scholar 

  42. S. Paulraj, R. Jayavel, Microwave-assisted synthesis of Ru and Ce doped tungsten oxide for supercapacitor electrodes. J. Mater. Sci.: Mater. Electron. 29(16), 13794–13802 (2018). https://doi.org/10.1007/s10854-018-9510-5

    Article  CAS  Google Scholar 

  43. Y. Wang, X. Li, Y. Wang, Y. Liu, Y. Bai, R. Liu, G. Yuan, High-performance flexible MnO2@carbonized cotton textile electrodes for enlarged operating potential window symmetrical supercapacitors. Electrochim. Acta 299, 12–18 (2019). https://doi.org/10.1016/j.electacta.2018.12.181

    Article  CAS  Google Scholar 

  44. L. Cui, C. Cheng, F. Peng, Y. Yang, Y. Li, M. Jia, X. Jin, A ternary MnO2-deposited RGO/lignin-based porous carbon composite electrode for flexible supercapacitor applications. New J. Chem. 43(35), 14084–14092 (2019). https://doi.org/10.1039/c9nj02184a

    Article  CAS  Google Scholar 

  45. M. Ghorbani, M.R. Golobostanfard, H. Abdizadeh, Flexible freestanding sandwich type ZnO/rGO/ZnO electrode for wearable supercapacitor. Appl. Surf. Sci. 419, 277–285 (2017). https://doi.org/10.1016/j.apsusc.2017.05.060

    Article  CAS  Google Scholar 

  46. Y. Guo, Z. Zhu, Y. Chen, H. He, X. Li, T. Qin, Y. Wang, High-performance supercapacitors of ruthenium-based nanohybrid compounds. J. Alloy Compd. 842, 155798 (2020). https://doi.org/10.1016/j.jallcom.2020.155798

    Article  CAS  Google Scholar 

  47. K.-C. Huang, C.-H. Lin, K.S. Anuratha, T.-Y. Huang, J.-Y. Lin, F.-G. Tseng, C.-K. Hsieh, Laser printer patterned sacrificed layer for arbitrary design and scalable fabrication of the all-solid-state interdigitated in-planar hydrous ruthenium oxide flexible micro supercapacitors. J. Power Sources 417, 108–116 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.016

    Article  CAS  Google Scholar 

  48. S.N. Khatavkar, S.D. Sartale, α-Fe2O3 thin film on stainless steel mesh: a flexible electrode for supercapacitor. Mater. Chem. Phys. 225, 284–291 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.079

    Article  CAS  Google Scholar 

  49. J. Shen, Q. Wang, K. Zhang, S. Wang, L. Li, S. Dong, S. Zhao, J. Chen, R. Sun, Y. Wang, Z. Jian, W. Zhang, Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@NiMoO4/PANI. Electrochim. Acta 320, 134578 (2019). https://doi.org/10.1016/j.electacta.2019.134578

    Article  CAS  Google Scholar 

  50. S. Liu, Y. Yin, Y. Shen, K.S. Hui, Y.T. Chun, J.M. Kim, K.N. Hui, L. Zhang, S.C. Jun, Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 16(4), 1906458 (2020). https://doi.org/10.1002/smll.201906458

    Article  CAS  Google Scholar 

  51. X. Li, Z. Yang, W. Qi, Y. Li, Y. Wu, S. Zhou, S. Huang, J. Wei, H. Li, P. Yao, Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance. Appl. Surf. Sci. 363, 381–388 (2016). https://doi.org/10.1016/j.apsusc.2015.12.039

    Article  CAS  Google Scholar 

  52. S.C. Lee, M. Kim, J.-H. Park, E.S. Kim, S. Liu, K.Y. Chung, S. Chan Jun, An unexpected phase-transformation of cobalt–vanadium layered double hydroxides toward high energy density hybrid supercapacitor. J Power Sources 486, 229–341 (2021). https://doi.org/10.1016/j.jpowsour.2020.229341

    Article  CAS  Google Scholar 

  53. P.A. Shinde, N.R. Chodankar, S. Lee, E. Jung, S. Aftab, Y.-K. Han, S.C. Jun, All-redox solid-state supercapacitor with cobalt manganese oxide@bimetallic hydroxides and vanadium nitride@nitrogen-doped carbon electrodes. Chem. Eng. J. 405, 127029 (2021). https://doi.org/10.1016/j.cej.2020.127029

    Article  CAS  Google Scholar 

  54. X. Tang, X. Guo, W. Wu, G. Wang, 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for Lithium-based batteries. Adv. Energy Mater. 8(33), 1801897 (2018). https://doi.org/10.1002/aenm.201801897

    Article  CAS  Google Scholar 

  55. C. Zhu, Y. Sun, D. Chao, X. Wang, P. Yang, X. Zhang, H. Huang, H. Zhang, H.J. Fan, A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy 26, 1–6 (2016). https://doi.org/10.1016/j.nanoen.2016.04.056

    Article  CAS  Google Scholar 

  56. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. 128(30), 8812–8816 (2016). https://doi.org/10.1002/ange.201604372

    Article  Google Scholar 

  57. B. Gao, X. Li, K. Ding, C. Huang, Q. Li, P.K. Chu, K. Huo, Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 7(1), 14–37 (2019). https://doi.org/10.1039/C8TA05760E

    Article  CAS  Google Scholar 

  58. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 150286 (2016)

    Article  Google Scholar 

  59. M.-S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20(8), 425–451 (2017)

    Article  CAS  Google Scholar 

  60. D. Choi, P.N. Kumta, Synthesis and characterization of nanostructured niobium and molybdenum nitrides by a two-step transition metal halide approach. J. Am. Ceram. Soc. 94(8), 2371–2378 (2011). https://doi.org/10.1111/j.1551-2916.2011.04412.x

    Article  CAS  Google Scholar 

  61. K. Schwarz, Band structure and chemical bonding in transition metal carbides and nitrides. Crit. Rev. Solid State Mater. Sci. 13(3), 211–257 (1987). https://doi.org/10.1080/10408438708242178

    Article  CAS  Google Scholar 

  62. D.J. Ham, J.S. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4), 873–899 (2009). https://doi.org/10.3390/en20400873

    Article  CAS  Google Scholar 

  63. D. Zhao, Z. Cui, S. Wang, J. Qin, M. Cao, VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 4(20), 7914–7923 (2016). https://doi.org/10.1039/C6TA01707J

    Article  CAS  Google Scholar 

  64. C. Huang, Y. Yang, J. Fu, J. Wu, H. Song, X. Zhang, B. Gao, P.K. Chu, K. Huo, Flexible Nb4N5/rGO electrode for high-performance solid state supercapacitors. J. Nanosci. Nanotechnol. 18(1), 30–38 (2018). https://doi.org/10.1166/jnn.2018.14595

    Article  CAS  Google Scholar 

  65. W. Bi, Z. Hu, X. Li, C. Wu, J. Wu, Y. Wu, Y. Xie, Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitors. Nano Res. 8(1), 193–200 (2015). https://doi.org/10.1007/s12274-014-0612-y

    Article  CAS  Google Scholar 

  66. C. Dong, X. Wang, X. Liu, X. Yuan, W. Dong, H. Cui, Y. Duan, F. Huang, In situ grown Nb4N5 nanocrystal on nitrogen-doped graphene as a novel anode for lithium ion battery. RSC Adv. 6(84), 81290–81295 (2016). https://doi.org/10.1039/c6ra13647h

    Article  CAS  Google Scholar 

  67. H. Xu, H. Zhang, L. Fang, J. Yang, K. Wu, Y. Wang, Hierarchical molybdenum nitride nanochexes by a textured self-assembly in gas–solid phase for the enhanced application in lithium ion batteries. ACS Nano 9(7), 6817–6825 (2015). https://doi.org/10.1021/acsnano.5b02415

    Article  CAS  Google Scholar 

  68. B. Das, M. Behm, G. Lindbergh, M.V. Reddy, B.V.R. Chowdari, High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv. Powder Technol. 26(3), 783–788 (2015). https://doi.org/10.1016/j.apt.2015.02.001

    Article  CAS  Google Scholar 

  69. X. Jiang, W. Lu, X. Yu, S. Song, Y. Xing, Fabrication of a vanadium nitride/N-doped carbon hollow nanosphere composite as an efficient electrode material for asymmetric supercapacitors. Nanoscale Adv. 2(9), 3865–3871 (2020). https://doi.org/10.1039/D0NA00288G

    Article  CAS  Google Scholar 

  70. Z. Qi, B. Wei, J. Wang, Y. Yang, Z. Wang, Nanostructured porous CrN thin films by oblique angle magnetron sputtering for symmetric supercapacitors. J. Alloy Compd. 806, 953–959 (2019). https://doi.org/10.1016/j.jallcom.2019.07.325

    Article  CAS  Google Scholar 

  71. A. Guerra, E. Haye, A. Achour, M. Harnois, T. Hadjersi, J.-F. Colomer, J.-J. Pireaux, S. Lucas, R. Boukherroub, High performance of 3D silicon nanowires array@CrN for electrochemical capacitors. Nanotechnology 31(3), 035407 (2020). https://doi.org/10.1088/1361-6528/ab4963

    Article  CAS  Google Scholar 

  72. Z. Gao, Z. Wu, S. Zhao, T. Zhang, Q. Wang, Enhanced capacitive property of HfN film electrode by plasma etching for supercapacitors. Mater. Lett. 235, 148–152 (2019). https://doi.org/10.1016/j.matlet.2018.10.032

    Article  CAS  Google Scholar 

  73. H. Shen, B. Wei, D. Zhang, Z. Qi, Z. Wang, Magnetron sputtered NbN thin film electrodes for supercapacitors. Mater. Lett. 229, 17–20 (2018). https://doi.org/10.1016/j.matlet.2018.06.052

    Article  CAS  Google Scholar 

  74. T. He, W. Zhang, P. Manasa, F. Ran, Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor. J. Alloy Compd. 812, 152138 (2020). https://doi.org/10.1016/j.jallcom.2019.152138

    Article  CAS  Google Scholar 

  75. S. Ouendi, K. Robert, D. Stiévenard, T. Brousse, P. Roussel, C. Lethien, Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Energy Storage Mater. 20, 243–252 (2019). https://doi.org/10.1016/j.ensm.2019.04.006

    Article  Google Scholar 

  76. X. Xu, S. Chang, Z. Hong, Y. Zeng, H. Zhang, P. Li, S. Zheng, Z. Wang, S. Duo, Construction of 3D CrN@ nitrogen-doped carbon nanosheet arrays by reactive magnetron sputtering for the free-standing electrode of supercapacitor. Nanotechnology 33(5), 055402 (2021). https://doi.org/10.1088/1361-6528/ac3356

    Article  CAS  Google Scholar 

  77. S. Venkateshalu, J. Cherusseri, M. Karnan, K.S. Kumar, P. Kollu, M. Sathish, J. Thomas, S.K. Jeong, A.N. Grace, New method for the synthesis of 2D vanadium nitride (MXene) and its application as a supercapacitor electrode. ACS Omega 5(29), 17983–17992 (2020). https://doi.org/10.1021/acsomega.0c01215

    Article  CAS  Google Scholar 

  78. L. Xu, L. Sun, J. Feng, L. Qi, I. Muhammad, J. Maher, X. Cheng, W. Song, Nanocasting synthesis of an iron nitride-ordered mesopore carbon composite as a novel electrode material for supercapacitors. RSC Adv. 7(70), 44619–44625 (2017). https://doi.org/10.1039/c7ra08704g

    Article  CAS  Google Scholar 

  79. A. Śliwak, A. Moyseowicz, G. Gryglewicz, Hydrothermal-assisted synthesis of an iron nitride–carbon composite as a novel electrode material for supercapacitors. J. Mater. Chem. A 5(12), 5680–5684 (2017). https://doi.org/10.1039/C6TA10985C

    Article  CAS  Google Scholar 

  80. M. Ishaq, M. Jabeen, W. Song, L. Xu, W. Li, Q. Deng, Fluorinated graphene-supported Nickel-Cobalt-Iron nitride nanoparticles as a promising hybrid electrode for supercapacitor applications. Electrochim. Acta 282, 913–922 (2018). https://doi.org/10.1016/j.electacta.2018.06.087

    Article  CAS  Google Scholar 

  81. N. Ouldhamadouche, A. Achour, R. Lucio-Porto, M. Islam, S. Solaymani, A. Arman, A. Ahmadpourian, H. Achour, L. Le Brizoual, M.A. Djouadi, Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J. Mater. Sci. Technol. 34(6), 976–982 (2018). https://doi.org/10.1016/j.jmst.2017.11.048

    Article  CAS  Google Scholar 

  82. W. Zhang, Y. Yang, M. Ravi, L. Kong, L. Kang, F. Ran, Interconnected porous composites electrode materials of Carbon@Vanadium nitride by directly absorbing VO3. Electrochim. Acta 306, 113–121 (2019). https://doi.org/10.1016/j.electacta.2019.03.112

    Article  CAS  Google Scholar 

  83. A. Salman, S. Padmajan Sasikala, I.H. Kim, J.T. Kim, G.S. Lee, J.G. Kim, S.O. Kim, Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale 12(39), 20239–20249 (2020). https://doi.org/10.1039/d0nr06636b

    Article  CAS  Google Scholar 

  84. J. Wang, K. Ma, J. Zhang, F. Liu, J. Cheng, Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J. Colloid Interface Sci. 507, 290–299 (2017). https://doi.org/10.1016/j.jcis.2017.07.095

    Article  CAS  Google Scholar 

  85. Q. Zhang, L. Mei, X. Cao, Y. Tang, Z. Zeng, Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A 8(31), 15417–15444 (2020). https://doi.org/10.1039/D0TA03727C

    Article  CAS  Google Scholar 

  86. H. Tong, W. Bai, S. Yue, Z. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He, X. Zhang, Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. A 4(29), 11256–11263 (2016). https://doi.org/10.1039/C6TA02249A

    Article  CAS  Google Scholar 

  87. P. Kulkarni, S. Nataraj, R.G. Balakrishna, D. Nagaraju, M. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 5(42), 22040–22094 (2017). https://doi.org/10.1039/C7TA07329A

    Article  CAS  Google Scholar 

  88. T. Li, Y. Bai, Y. Wang, H. Xu, H. Jin, Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord. Chem. Rev. 410, 213221 (2020). https://doi.org/10.1016/j.ccr.2020.213221

    Article  CAS  Google Scholar 

  89. Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors. Electrochim. Acta 149, 316–323 (2014). https://doi.org/10.1016/j.electacta.2014.10.097

    Article  CAS  Google Scholar 

  90. D. Kim, P. Karthick Kannan, S. Mateti, C.-H. Chung, Indirect nanoconstruction morphology of Ni3S2 electrodes renovates the performance for electrochemical energy storage. ACS Appl. Energy Mater. 1(12), 6945–6952 (2018). https://doi.org/10.1021/acsaem.8b01310

    Article  CAS  Google Scholar 

  91. T. Chen, Z. Liu, Z. Liu, X. Tao, H. Fan, L. Guo, Fabrication of interconnected 2D/3D NiS/Ni3S4 composites for high performance supercapacitor. Mater. Lett. 248, 1–4 (2019). https://doi.org/10.1016/j.matlet.2019.03.125

    Article  CAS  Google Scholar 

  92. S. Liu, K. San Hui, K.N. Hui, J.M. Yun, K.H. Kim, Vertically stacked bilayer CuCo2O4/MnCo 2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J. Mater. Chem. A 4(21), 8061–8071 (2016). https://doi.org/10.1039/C6TA00960C

    Article  CAS  Google Scholar 

  93. J. Ren, Q. Meng, Z. Xu, X. Zhang, J. Chen, CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: High-performance electrode materials for supercapacitors. J. Electroanal. Chem. 836, 30–37 (2019). https://doi.org/10.1016/j.jelechem.2019.01.049

    Article  CAS  Google Scholar 

  94. H. Jia, Z. Wang, X. Zheng, Y. Cai, J. Lin, H. Liang, J. Qi, J. Cao, J. Feng, W. Fei, Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim. Acta 312, 54–61 (2019). https://doi.org/10.1016/j.electacta.2019.04.192

    Article  CAS  Google Scholar 

  95. Z. Sun, X. Yang, H. Lin, F. Zhang, Q. Wang, F. Qu, Bifunctional iron disulfide nanoellipsoids for high energy density supercapacitor and electrocatalytic oxygen evolution applications. Inorg. Chem. Front. 6(3), 659–670 (2019). https://doi.org/10.1039/C8QI01230J

    Article  CAS  Google Scholar 

  96. D. Li, S. Song, J. Lu, J. Liang, Y. Zhang, L. Li, A general self-template-etched solution route for the synthesis of 2D γ-manganese sulfide nanoplates and their enhanced supercapacitive performance. New J. Chem. 43(12), 4674–4680 (2019). https://doi.org/10.1039/C8NJ06143B

    Article  CAS  Google Scholar 

  97. R.K. Mishra, G.W. Baek, K. Kim, H.-I. Kwon, S.H. Jin, One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Appl. Surf. Sci. 425, 923–931 (2017). https://doi.org/10.1016/j.apsusc.2017.07.045

    Article  CAS  Google Scholar 

  98. N. Parveen, S.A. Ansari, H.R. Alamri, M.O. Ansari, Z. Khan, M.H. Cho, Facile synthesis of SnS2 nanostructures with different morphologies for high-performance supercapacitor applications. ACS Omega 3(2), 1581–1588 (2018). https://doi.org/10.1021/acsomega.7b01939

    Article  CAS  Google Scholar 

  99. X.Y. Yu, X.W. David Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8(3), 1701–592 (2018). https://doi.org/10.1002/aenm.201701592

    Article  CAS  Google Scholar 

  100. R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, X. He, Y. Wang, Z. Xu, A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597–606 (2017). https://doi.org/10.1016/j.apsusc.2017.06.003

    Article  CAS  Google Scholar 

  101. B.Y. Guan, L. Yu, X. Wang, S. Song, X.W.D. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29(6), 1605051 (2017). https://doi.org/10.1002/adma.201605051

    Article  CAS  Google Scholar 

  102. M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.-F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Fabrication of hierarchical NiCo2S4@ CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 293, 328–337 (2019). https://doi.org/10.1016/j.electacta.2018.10.051

    Article  CAS  Google Scholar 

  103. S. Yu, V.M.H. Ng, F. Wang, Z. Xiao, C. Li, L.B. Kong, W. Que, K. Zhou, Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. J. Mater. Chem. A 6(20), 9332–9367 (2018)

    Article  CAS  Google Scholar 

  104. B. Balakrishnan, S.K. Balasingam, K. SivalingamNallathambi, A. Ramadoss, M. Kundu, J.S. Bak, I.H. Cho, P. Kandasamy, Y. Jun, H.-J. Kim, Facile synthesis of pristine FeS2 microflowers and hybrid rGO-FeS2 microsphere electrode materials for high performance symmetric capacitors. J. Ind. Eng. Chem. 71, 191–200 (2019). https://doi.org/10.1016/j.jiec.2018.11.022

    Article  CAS  Google Scholar 

  105. A.M. Zardkhoshoui, S.S.H. Davarani, A.A. Asgharinezhad, Designing graphene-wrapped NiCo2Se4 microspheres with petal-like FeS2 toward flexible asymmetric all-solid-state supercapacitors. Dalton Trans. 48(13), 4274–4282 (2019). https://doi.org/10.1039/C9DT00009G

    Article  Google Scholar 

  106. P. Naveenkumar, G.P. Kalaignan, Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications. Electrochim. Acta 289, 437–447 (2018). https://doi.org/10.1016/j.electacta.2018.09.100

    Article  CAS  Google Scholar 

  107. X. Xu, X. Zhang, Y. Zhao, Y. Hu, An efficient hybrid supercapacitor based on battery-type MnS/reduced graphene oxide and capacitor-type biomass derived activated carbon. J. Mater. Sci.: Mater. Electron. 29(10), 8410–8420 (2018). https://doi.org/10.1007/s10854-018-8852-3

    Article  CAS  Google Scholar 

  108. R. Barik, N. Devi, V.K. Perla, S.K. Ghosh, K. Mallick, Stannous sulfide nanoparticles for supercapacitor application. Appl. Surf. Sci. 472, 112–117 (2019). https://doi.org/10.1016/j.apsusc.2018.03.172

    Article  CAS  Google Scholar 

  109. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975

    Article  CAS  Google Scholar 

  110. M. Sajjad, W. Lu, Covalent organic frameworks based nanomaterials: design, synthesis, and current status for supercapacitor applications: a review. J. Energy Storage 39, 102618 (2021). https://doi.org/10.1016/j.est.2021.102618

    Article  Google Scholar 

  111. N.S. Arul, J.I. Han, Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Mater. Lett. 181, 345–349 (2016). https://doi.org/10.1016/j.matlet.2016.06.065

    Article  CAS  Google Scholar 

  112. Y. Gu, W. Du, Y. Darrat, M. Saleh, Y. Huang, Z. Zhang, S. Wei, In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. Appl. Nanosci. 10(5), 1591–1601 (2019). https://doi.org/10.1007/s13204-019-01234-8

    Article  CAS  Google Scholar 

  113. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, S.J. Kim, Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim. Acta 295, 591–598 (2019). https://doi.org/10.1016/j.electacta.2018.10.191

    Article  CAS  Google Scholar 

  114. Y. Gu, L.-Q. Fan, J.-L. Huang, C.-L. Geng, J.-M. Lin, M.-L. Huang, Y.-F. Huang, J.-H. Wu, N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 425, 60–68 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.123

    Article  CAS  Google Scholar 

  115. A. Gopalakrishnan, S. Badhulika, Binder-free polyaniline sheathed crumpled cobalt diselenide nanoparticles as an advanced electrode for high specific energy asymmetric supercapacitor. J. Energy Storage 41, 102853 (2021). https://doi.org/10.1016/j.est.2021.102853

    Article  Google Scholar 

  116. C. Miao, X. Yin, G. Xia, K. Zhu, K. Ye, Q. Wang, J. Yan, D. Cao, G. Wang, Facile microwave-assisted synthesis of cobalt diselenide/reduced graphene oxide composite for high-performance supercapacitors. Appl. Surf. Sci. 543, 148811 (2021). https://doi.org/10.1016/j.apsusc.2020.148811

    Article  CAS  Google Scholar 

  117. C. Miao, X. Xiao, Y. Gong, K. Zhu, K. Cheng, K. Ye, J. Yan, D. Cao, G. Wang, P. Xu, Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces. 12(8), 9365–9375 (2020). https://doi.org/10.1021/acsami.9b22606

    Article  CAS  Google Scholar 

  118. C.V.V.M. Gopi, A.E. Reddy, J.-S. Bak, I.-H. Cho, H.-J. Kim, One-pot hydrothermal synthesis of tungsten diselenide/reduced graphene oxide composite as advanced electrode materials for supercapacitors. Mater. Lett. 223, 57–60 (2018). https://doi.org/10.1016/j.matlet.2018.04.023

    Article  CAS  Google Scholar 

  119. S.R. Marri, S. Ratha, C.S. Rout, J. Behera, 3D cuboidal vanadium diselenide embedded reduced graphene oxide hybrid structures with enhanced supercapacitor properties. Chem. Commun. 53(1), 228–231 (2017). https://doi.org/10.1039/C6CC08035A

    Article  CAS  Google Scholar 

  120. H.M. El Sharkawy, D.M. Sayed, A.S. Dhmees, R.M. Aboushahba, N.K. Allam, Facile synthesis of nanostructured binary Ni–Cu phosphides as advanced battery materials for asymmetric electrochemical supercapacitors. ACS Appl. Energy Mater. 3(9), 9305–9314 (2020). https://doi.org/10.1021/acsaem.0c01630

    Article  CAS  Google Scholar 

  121. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017). https://doi.org/10.1002/smll.201701530

    Article  CAS  Google Scholar 

  122. J. Theerthagiri, A.P. Murthy, S.J. Lee, K. Karuppasamy, S.R. Arumugam, Y. Yu, M.M. Hanafiah, H.-S. Kim, V. Mittal, M.Y. Choi, Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 47(4), 4404–4425 (2021). https://doi.org/10.1016/j.ceramint.2020.10.098

    Article  CAS  Google Scholar 

  123. Y.-C. Chen, Z.-B. Chen, Y.-G. Lin, Y.-K. Hsu, Synthesis of copper phosphide nanotube arrays as electrodes for asymmetric supercapacitors. ACS Sustain. Chem. Eng. 5(5), 3863–3870 (2017). https://doi.org/10.1021/acssuschemeng.6b03006

    Article  CAS  Google Scholar 

  124. F. Liang, L. Huang, L. Tian, J. Li, H. Zhang, S. Zhang, Microwave-assisted hydrothermal synthesis of cobalt phosphide nanostructures for advanced supercapacitor electrodes. CrystEngComm 20(17), 2413–2420 (2018). https://doi.org/10.1039/c8ce00054a

    Article  CAS  Google Scholar 

  125. Z. Zheng, M. Retana, X. Hu, R. Luna, Y.H. Ikuhara, W. Zhou, Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 9(20), 16986–16994 (2017). https://doi.org/10.1021/acsami.7b01109

    Article  CAS  Google Scholar 

  126. G. Zhu, L. Yang, W. Wang, M. Ma, J. Zhang, H. Wen, D. Zheng, Y. Yao, Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem. Commun. 54(66), 9234–9237 (2018). https://doi.org/10.1039/C8CC02475H

    Article  CAS  Google Scholar 

  127. MSP, S., G. Gnanasekaran, P. Pazhamalai, S. Sahoo, M.M. Hossain, R.M. Bhattarai, S.-J. Kim, and Y.S. Mok, Hierarchically porous nanostructured nickel phosphide with carbon particles embedded by dielectric barrier discharge plasma deposition as a binder-free electrode for hybrid supercapacitors. ACS Sustainable Chemistry & Engineering, 2019. 7(17): p. 14805–14814. Doi: https://doi.org/10.1021/acssuschemeng.9b02832.

  128. P. Sivakumar, M.G. Jung, C.J. Raj, H.H. Rana, H.S. Park, 1D interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors. Int. J. Energy Res. (2021). https://doi.org/10.1002/er.6874

    Article  Google Scholar 

  129. S. Li, M. Hua, Y. Yang, W. Huang, X. Lin, L. Ci, J. Lou, P. Si, Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 7(29), 17386–17399 (2019). https://doi.org/10.1039/C9TA04832D

    Article  CAS  Google Scholar 

  130. T.T. Nguyen, J. Balamurugan, N.H. Kim, J.H. Lee, Hierarchical 3D Zn–Ni–P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 6(18), 8669–8681 (2018). https://doi.org/10.1039/C8TA01184B

    Article  CAS  Google Scholar 

  131. A.A. Saleh, A. Amer, D.M. Sayed, N.K. Allam, A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochim. Acta 380, 138197 (2021). https://doi.org/10.1016/j.electacta.2021.138197

    Article  CAS  Google Scholar 

  132. D. Ling, N. Lee, T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48(5), 1276–1285 (2015). https://doi.org/10.1021/acs.accounts.5b00038

    Article  CAS  Google Scholar 

  133. S. Bai, H. Zou, H. Dietsch, Y.C. Simon, C. Weder, Functional iron oxide nanoparticles as reversible crosslinks for magnetically addressable shape-memory polymers. Macromol. Chem. Phys. 215(5), 398–404 (2014). https://doi.org/10.1002/macp.201300632

    Article  CAS  Google Scholar 

  134. B. Šljukić, C.E. Banks, R.G. Compton, Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett. 6(7), 1556–1558 (2006). https://doi.org/10.1021/nl060366v

    Article  CAS  Google Scholar 

  135. G. Li, R. Li, W. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett. 9(4), 1–8 (2017). https://doi.org/10.1007/s40820-017-0147-3

    Article  CAS  Google Scholar 

  136. T. Valdés-Solís, P. Valle-Vigón, S. Álvarez, G. Marbán, A.B. Fuertes, Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8(12), 2037–2042 (2007). https://doi.org/10.1016/j.catcom.2007.03.030

    Article  CAS  Google Scholar 

  137. E. Peng, E.S.G. Choo, P. Chandrasekharan, C.T. Yang, J. Ding, K.H. Chuang, J.M. Xue, Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8(23), 3620–3630 (2012). https://doi.org/10.1002/smll.201201427

    Article  CAS  Google Scholar 

  138. Z. Li, S.X. Wang, Q. Sun, H.L. Zhao, H. Lei, M.B. Lan, Z.X. Cheng, X.L. Wang, S.X. Dou, G.Q. Lu, Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Adv. Healthcare Mater. 2(7), 958–964 (2013). https://doi.org/10.1002/adhm.201200340

    Article  CAS  Google Scholar 

  139. M.S. Amulya, H. Nagaswarupa, M.A. Kumar, C. Ravikumar, S. Prashantha, K. Kusuma, Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Appl. Surf. Sci. Adv. 1, 100023 (2020). https://doi.org/10.1016/j.apsadv.2020.100023

    Article  Google Scholar 

  140. S. Sharifi, A. Yazdani, K. Rahimi, Incremental substitution of Ni with Mn in NiFe2O4 to largely enhance its supercapacitance properties. Sci. Rep. 10(1), 10916 (2020). https://doi.org/10.1038/s41598-020-67802-z

    Article  CAS  Google Scholar 

  141. B. Bhujun, M.T. Tan, A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345–353 (2017). https://doi.org/10.1016/j.rinp.2016.04.010

    Article  Google Scholar 

  142. A.A. Tahir, H.A. Burch, K.U. Wijayantha, B.G. Pollet, A new route to control texture of materials: Nanostructured ZnFe2O4 photoelectrodes. Int. J. Hydrogen Energy 38(11), 4315–4323 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.130

    Article  CAS  Google Scholar 

  143. A.A. Tahir, K.U. Wijayantha, Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J. Photochem. Photobiol. A 216(2–3), 119–125 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.032

    Article  CAS  Google Scholar 

  144. N.K. Sahu, J. Gupta, D. Bahadur, PEGylated FePt–Fe 3 O 4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans. 44(19), 9103–9113 (2015). https://doi.org/10.1039/C4DT03470H

    Article  CAS  Google Scholar 

  145. S.S. Raut, B.R. Sankapal, First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: approach towards solid-state symmetric supercapacitor device. Electrochim. Acta 198, 203–211 (2016). https://doi.org/10.1016/j.electacta.2016.03.059

    Article  CAS  Google Scholar 

  146. V. Blanco-Gutierrez, R. Saez-Puche, M.J. Torralvo-Fernandez, Superparamagnetism and interparticle interactions in ZnFe2O4 nanocrystals. J. Mater. Chem. 22(7), 2992–3003 (2012). https://doi.org/10.1039/C1JM14856G

    Article  CAS  Google Scholar 

  147. P. Guo, G. Zhang, J. Yu, H. Li, X. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids Surf., A 395, 168–174 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.027

    Article  CAS  Google Scholar 

  148. J. Wang, Q. Chen, B. Hou, Z. Peng, Synthesis and magnetic properties of single-crystals of MnFe2O4 nanorods. Eur. J. Inorg. Chem. 2004(6), 1165–1168 (2004). https://doi.org/10.1002/ejic.200300555

    Article  CAS  Google Scholar 

  149. H.-M. Fan, J.-B. Yi, Y. Yang, K.-W. Kho, H.-R. Tan, Z.-X. Shen, J. Ding, X.-W. Sun, M.C. Olivo, Y.-P. Feng, Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3(9), 2798–2808 (2009). https://doi.org/10.1021/nn9006797

    Article  CAS  Google Scholar 

  150. L. Cui, P. Guo, G. Zhang, Q. Li, R. Wang, M. Zhou, L. Ran, X. Zhao, Facile synthesis of cobalt ferrite submicrospheres with tunable magnetic and electrocatalytic properties. Colloids Surf., A 423, 170–177 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.064

    Article  CAS  Google Scholar 

  151. N. Bao, L. Shen, Y.-H.A. Wang, J. Ma, D. Mazumdar, A. Gupta, Controlled growth of monodisperse self-supported superparamagnetic nanostructures of spherical and rod-like CoFe2O4 nanocrystals. J. Am. Chem. Soc. 131(36), 12900–12901 (2009). https://doi.org/10.1021/ja905811h

    Article  CAS  Google Scholar 

  152. Y. Xu, J. Wei, J. Yao, J. Fu, D. Xue, Synthesis of CoFe2O4 nanotube arrays through an improved sol–gel template approach. Mater. Lett. 62(8–9), 1403–1405 (2008). https://doi.org/10.1016/j.matlet.2007.08.066

    Article  CAS  Google Scholar 

  153. S. Zhang, D. Dong, Y. Sui, Z. Liu, H. Wang, Z. Qian, W. Su, Preparation of core shell particles consisting of cobalt ferrite and silica by sol–gel process. J. Alloy Compd. 415(1–2), 257–260 (2006). https://doi.org/10.1016/j.jallcom.2005.07.048

    Article  CAS  Google Scholar 

  154. H. Aijun, L. Juanjuan, Y. Mingquan, L. Yan, P. Xinhua, Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin. J. Chem. Eng. 19(6), 1047–1051 (2011). https://doi.org/10.1016/S1004-9541(11)60090-6

    Article  Google Scholar 

  155. S. Sartale, C. Lokhande, A room temperature two-step electrochemical process for large area nanocrystalline ferrite thin films deposition. J. Electroceram. 15(1), 35–44 (2005). https://doi.org/10.1007/s10832-005-1076-y

    Article  CAS  Google Scholar 

  156. V. Vignesh, K. Subramani, M. Sathish, R. Navamathavan, Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids Surf., A 538, 668–677 (2018). https://doi.org/10.1016/j.colsurfa.2017.11.045

    Article  CAS  Google Scholar 

  157. R. Roshani, A. Tadjarodi, Synthesis of ZnFe2O4 nanoparticles with high specific surface area for high-performance supercapacitor. J. Mater. Sci.: Mater. Electron. 31(24), 23025–23036 (2020). https://doi.org/10.1007/s10854-020-04830-5

    Article  CAS  Google Scholar 

  158. B. Saravanakumar, S. Ramachandran, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, Electrochemical performances of monodispersed spherical CuFe2O4 nanoparticles for pseudocapacitive applications. Vacuum 168, 108798 (2019). https://doi.org/10.1016/j.vacuum.2019.108798

    Article  CAS  Google Scholar 

  159. H. Kennaz, A. Harat, O. Guellati, D.Y. Momodu, F. Barzegar, J.K. Dangbegnon, N. Manyala, M. Guerioune, Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J. Solid State Electrochem. 22(3), 835–847 (2017). https://doi.org/10.1007/s10008-017-3813-y

    Article  CAS  Google Scholar 

  160. G. Nabi, W. Raza, M.A. Kamran, T. Alharbi, M. Rafique, M.B. Tahir, S. Hussain, N. Khalid, N. Malik, R.S. Ahmed, Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. J. Energy Storage 29, 101452 (2020). https://doi.org/10.1016/j.est.2020.101452

    Article  Google Scholar 

  161. M. Sethi, U.S. Shenoy, S. Muthu, D.K. Bhat, Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Front. Mater. Sci. 14(2), 120–132 (2020). https://doi.org/10.1007/s11706-020-0499-3

    Article  Google Scholar 

  162. M. Khairy, W. Bayoumy, S. Selima, M. Mousa, Studies on characterization, magnetic and electrochemical properties of nano-size pure and mixed ternary transition metal ferrites prepared by the auto-combustion method. J. Mater. Res. 35(20), 2652–2663 (2020). https://doi.org/10.1557/jmr.2020.200

    Article  CAS  Google Scholar 

  163. B. Nawaz, G. Ali, M.O. Ullah, S. Rehman, F. Abbas, Investigation of the electrochemical properties of Ni0.5Zn0.5Fe2O4 as binder-based and binder-free electrodes of supercapacitors. Energies 14(11), 3297 (2021). https://doi.org/10.3390/en14113297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution.

Corresponding authors

Correspondence to Rahul Singhal or Beer Pal Singh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Data availability

The data/findings reported in this review article is available in respective references and doi is given for all references in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, R., Chaudhary, M., Tyagi, S. et al. Recent developments in transition metal-based nanomaterials for supercapacitor applications. Journal of Materials Research 37, 2124–2149 (2022). https://doi.org/10.1557/s43578-022-00598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00598-y

Keywords

Navigation