Genetic resistance to Ceratocystis fimbriata in elite genotypes of Gmelina arborea

Authors

DOI:

https://doi.org/10.15517/am.2023.52968

Keywords:

forest pathology, tropical diseases, genetic improvement, genetic resistance, clonal forestry

Abstract

Introduction. In Costa Rica, an incidence of nearly 40 % has been reported for a disease caused by Ceratocystis fimbriata in commercial plantations of Gmelina arborea (melina), which is the second most widely planted forest tree species in the country. Consequently, there is a pressing need to explore genetic material that exhibit resistance to this pathogen. Objective. To evaluate two methods of C. fimbriata inoculation and their effect on elite genotypes of melina, for their use within the melina genetic improvement program at the international forest genetic improvement cooperative GENFORES. Materials and methods. A pathogenicity test was established using the CIF 001 isolate of C. fimbriata under greenhouse conditions, in Santa Clara, San Carlos, Costa Rica. Two inoculation methods were evaluated in five elite genotypes from October 2019 to January 2020. The effect of the pathogen was evaluated by measuring total height development, basal diameter, number of leaves, incidence, and internal injury within the plant. The assessment was conducted at 30, 60, 90, and 120 days. Results. Mortality was observed from day 38 and reached an incidence of 26.7 % at 120 days. The treatment using solid medium displayed the highest incidence percentage. Genotypes 15N and 58 exhibited high susceptibility to the CIF 001 isolate, whereas genotypes 1 and 57 exhibited high tolerance. Based on the results, it was determined that the pathogenicity test of C. fimbriata on melina can be evaluated at 90 days. Conclusion. Solid medium was the most effective method for inoculating melina with C. fimbriata (isolate CIF 001). Evaluations showed the need to assess results at least 90 days after inoculation. Based on the analysis of the internal lesion, genotype 1 was identified as highly resistant to the effect of the pathogen. The inclusion of this genotype as an evaluation technique will substantially enhance the protocol for assessing tolerance to the pathogen.

Downloads

Download data is not yet available.

References

Al Adawi, A. O., Barnes, I., Khan, I. A., Deadman, M. L., Wingfield, B. D., & Wingfield, M. J. (2014). Clonal structure of Ceratocystis manginecans populations from mango wilt disease in Oman and Pakistan. Australasian Plant Pathology, 43(4), 393–402. https://doi.org/10.1007/s13313-014-0280-0

Alvarenga Arriel, D. A., da Silva Guimarães, L. M., Vilela de Resende, M. D., Pinheiro Lima Neto, F., Said Heid Schettini Silva, D. F., Lopes de Siqueira, D., & Cout Alfenas, A. (2016). Genetic control of resistance on Mangifera indica to Ceratocystis wilt. Scientia Horticulturae, 211, 312–318. https://doi.org/10.1016/j.scienta.2016.09.001

Argôlo Magalhães, D. M., Martins Newman Luz, E. D., Vanderlei Lopes, U., Rocha Niella, A. R., & Oliveira Damaceno, V. (2016). Leaf disc method for screening Ceratocystis wilt resistance in cacao. Tropical Plant Pathology, 41, 155–161. https://doi.org/10.1007/s40858-016-0081-9

Arguedas, M., Rodríguez-Solís, M., Moya, R., & Berrocal, A. (2018). Gmelina arborea “death disease” in fast-growth plantations: Effects of soil and climatic conditions on severity and incidence and its implications for wood quality. Forest Systems, 27(1), Article e003. https://doi.org/10.5424/fs/2018271-12236

Ávila-Arias, C., Murillo-Cruz, R., Murillo-Gamboa, O., & Sandoval, C. (2015). Interacción genotipo sitio para dos conjuntos clonales de Gmelina arborea Roxb., en sitios planos del Pacífico Sur de Costa Rica. Revista Forestal Mesoamericana Kurú, 12(29), 2–14. https://doi.org/10.18845/rfmk.v12i29.2250

Ávila-Arias, C., Murillo-Cruz, R., & Murillo-Gamboa, O. (2015). Selección de clones superiores de dos conjuntos genéticos de Gmelina arborea en el Pacífico sur de Costa Rica. Revista de Ciencias Ambientales, 49(1), 17–35. https://doi.org/10.15359/rca.49-1.2

Baker, C. J., Harrington, T. C., Krauss, U., & Alfenas, A. C. (2003). Genetic Variability and Host Specialization in the Latin American Clade of Ceratocystis fimbriata. Phytopathology, 93(10), 1274–1284. https://doi.org/10.1094/phyto.2003.93.10.1274

Barnes, I., Fourie, A., Wingfield, M. J., Harrington, T. C., McNew, D. L., Sugiyama, L. S., & Keith, L. M. (2018). New Ceratocystis species associated with rapid death of Metrosideros polymorpha in Hawai`i. Persoonia – Molecular Phylogeny and Evolution of Fungi, 40, 154–181. https://doi.org/10.3767/persoonia.2018.40.07

Cavallini, L. F. A. (1998). Fitopatología: un enfoque agroecológico. Editorial Universidad de Costa Rica.

Cordero Vega, M. J. (2017). Caracterización morfológica, patogénica y molecular de aislamientos de Ceratocystis spp. provenientes de seis zonas cafetaleras de Costa Rica [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio SIBDI de la Universidad de Costa Rica. http://repositorio.sibdi.ucr.ac.cr:8080/xmlui/handle/123456789/4329

Desprez-Loustau, M. -L., Aguayo, J., Dutech, C., Hayden, K. J., Husson, C., Jakushkin, B., & Vacher, C. (2016). An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 73, 45–67. https://doi.org/10.1007/s13595-015-0487-4

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2019). Infostat software estadístico (Versión 2017). InfoStat. http://www.infostat.com.ar/

Espitia, M., Murillo, O., & Castillo, C. (2016). Ganancia genética esperada en melina (Gmelina arborea Roxb.) en Córdoba, (Colombia). Árvore, 40(1), 71–80. https://doi.org/10.1590/0100-67622016000100008

Ferreira, E. M., Harrington, T. C., Thorpe, D. J., & Alfenas, A. C. (2010). Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil. Plant Pathology, 59(4), 721–735. https://doi.org/10.1111/j.1365-3059.2010.02275.x

Ferreira, M. A., Harrington, T. C., Alfenas, A. C., & Mizubuti, E. S. (2011). Movement of genotypes of Ceratocystis fimbriata within and among Eucalyptus plantations in Brazil. Phytopathology, 101(8), 1005–1012. https://doi.org/10.1094/PHYTO-01-11-0015

Guimarães, L. M. S., Nunes, A. S., Santos, S. A., Resende, M. D. V., Damacena, M. B., Siqueira, D. L., Alves, R. S., & Alfenas, A. C. (2021). Resistance of mango cultivar Ubá to Ceratocystis fimbriata depends on the pathogen’s physiological variability. Crop Protection, 143, Article 105560. https://doi.org/10.1016/j.cropro.2021.105560

Harrington, T. C., Thorpe, D. J., & Alfenas, A. C. (2011). Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology, 101(5), 555–566. https://doi.org/10.1094/PHYTO-08-10-0228

Harrington, T. C., Kazmi, M. R., Al-Sadi, A. M., & Ismail, S. I. (2014). Intraspecific and intragenomic variability of ITS rDNA sequences reveals taxonomic problems in Ceratocystis fimbriata sensu stricto. Mycologia, 106(2), 224–242. https://doi.org/10.3852/13-189

Hernández Castro, W., Badilla Valverde, Y., Esquivel Segura, E., & Murillo Gamboa, O. (2021). Comportamiento de clones de melina (Gmelina arborea Roxb.) en condiciones de suelo ácidos. Revista Ciencias Ambientales, 55(2), 229–249. http://doi.org/10.15359/rca.55-2.11

Hernández-Castro, W., Murillo-Gamboa, O., & Badilla-Valverde, Y. (2021a). Selección temprana en ensayos clonales de melina (Gmelina arborea Robx.) en Costa Rica. Agronomía Mesoamericana, 32(1), 93–106. https://doi.org/10.15517/am.v32i1.42069

Hernández-Castro, W., Badilla Valverde, Y., & Murillo-Gamboa, O. (2021b). Estimación de parámetros genéticos de Gmelina arborea Roxb. (melina) en el Caribe de Costa Rica. Uniciencia, 35(1), 352–366. http://doi.org/10.15359/ru.35-1.22

Holland, L. A., Lawrence, D. P., Nouri, M. T., Travadon, R., Harrington, T. C., & Trouillas, F. P. (2019). Taxonomic revision and multi-locus phylogeny of the North American clade of Ceratocystis. Fungal Systematics and Evolution, 3(1), 135–156. https://doi.org/10.3114/fuse.2019.03.07

Instituto Meteorológico Nacional. (s.f.). Capas del mapa. Pronóstico del tiempo por regiones. Recuperado abril 3, 2020 de https://www.imn.ac.cr/mapa

Instituto Nacional de Estadística y Censos. (2015). VI Censo Nacional Agropecuario: Cultivo Agrícolas, Forestales y Ornamentales (1era ed.). Instituto Nacional de Estadística y Censos (INEC). https://n9.cl/acye5

Méndez-Álvarez, D., de Souza, C., Alfenas, A., Badilla, Y., Murillo, O., & Alfenas, R. (2020). First report of Ceratocystis fimbriata causing wilt on Gmelina arborea in Costa Rica. Forest Pathology, 50(5), Article e12628. https://doi.org/10.1111/efp.12628

Méndez-Álvarez, D., Murillo-Gamboa, O., Badilla-Valverde, Y., & Hernández-Castro, W. (2021). Genetic tolerance to Ceratocystis wilt in melina (Gmelina arborea Roxb.). Silvae Genetica, 70(1), 195–204. https://doi.org/10.2478/sg-2021-0017

Meneses Rojas, G. (2008). Estudio de aislamientos de hongo fitopatógeno del café Ceratocystis fimbriata [Tesis de bachiller, Instituto Tecnológico de Costa Rica]. Repositorio del Instituto Tecnológico de Costa Rica. https://repositoriotec.tec.ac.cr/handle/2238/543

Murillo-Gamboa, O., Salas-Rodríguez, A., Murillo-Cruz, R., & Ávila-Arias, C. (2016). Tasa de avance de la pudrición del tronco en melina Gmelina arborea Roxb. y posibilidades de manejo. Revista Forestal Mesoamericana Kurú, 13(32), 40–50. https://doi.org/10.18845/rfmk.v0i0.2551

Oliveira, L. S. S. (2010). Agressividade de isolados de Ceratocystis fimbriata em clones de Eucalyptus spp. [Dissertação mestrado, Universidade Federal de Viçosa]. Repositório do Biblioteca Florestal. http://www.bibliotecaflorestal.ufv.br/handle/123456789/2872

Oliveira, L. S. S., Guimarães, L. M. S., Ferreira, M. A., Nunes, A. S., Pimenta, L. V. A., & Alfenas, A. C. (2015). Aggressiveness, cultural characteristics and genetic variation of Ceratocystis fimbriata on Eucalyptus spp. Forest Pathology, 45(6), 505–514. https://doi.org/10.1111/efp.12200

Salas-Rodríguez, A., Murillo-Gamboa, O., Murillo-Cruz, R., Ávila-Arias, C., & Mata-Granados, X. (2016). Evaluación de la severidad de la pudrición del tronco en Gmelina arborea Roxb. Revista Forestal Mesoamericana Kurú, 13(32), 1–10. https://doi.org/10.18845/rfmk.v0i0.2547

Sanches, C. L. G., Pinto, L. R. M., Pomella, A. W. V., Silva, S. D. V. M., & Loguercio, L. L. (2008). Assessment of resistance to Ceratocystis cacaofunesta in cacao genotypes. European Journal of Plant Pathology, 122, 517–528. https://doi.org/10.1007/s10658-008-9319-9

Sniezko, R. A., & Koch, J. (2017). Breeding trees resistant to insects and diseases: putting theory into application. Biological Invasions, 19, 3377–3400. https://doi.org/10.1007/s10530-017-1482-5

Thorpe, D. J., Harrington, T. C., & Uchida, J. Y. (2005). Pathogenicity, Internal Transcribed Spacer-rDNA Variation, and Human Dispersal of Ceratocystis fimbriata on the Family Araceae. Phytopathology, 95(3), 316–323. https://doi.org/10.1094/phyto-95-0316

ur Rehman, A., ud Din Umar, U., Hasan Naqvi, S. A., Rana Latif, M., Aleem Khan, S., Tariq Malik, M., & Freed, S. (2015). Emerging resistance against different fungicides in Lasiodiplodia theobromae, the cause of mango dieback in Pakistan. Archives of Biological Sciences, 67(1), 241-249. https://doi.org/10.2298/ABS140904030R

Valdetaro, D. C. O. F., Oliveira, L. S. S., Guimarães, L. M. S., Harrington, T. C., Ferreira, M. A., Freitas, R. G., & Alfenas, A. C. (2015). Genetic variation, morphology and pathogenicity of Ceratocystis fimbriata on Hevea brasiliensis in Brazil. Tropical Plant Pathology, 40, 184–192. https://doi.org/10.1007/s40858-015-0036-6

Valdetaro, D. C. O. F, Harrington, T. C., Oliveira, L. S. S., Guimaraes, L. M. S., McNew, D. L., Pimenta, L. V. A., Goncalves, R. C., Schurt, D. A., & Alfenas, A. C. (2019). A host specialized form of Ceratocystis fimbriata causes seed and seedling blight on native Carapa guianensis (andiroba) in Amazonian rainforests. Fungal Biology, 123(2), 170–182. https://doi.org/10.1016/j.funbio.2018.12.001

Wingfield, M. J., & Robison, D. J. (2004). Diseases and insect pests of Gmelina arborea: real threats and real opportunities. New Forests, 28(2-3), 227–243. https://doi.org/10.1023/B:NEFO.0000040950.01256.ed

Yakushiji, H., Morita, T., & Jikumaru, S. (2019). Ceratocystis canker resistance in BC1 populations of interspecific hybridization of fig (Ficus carica) and F. erecta. Scientia Horticulturae, 252, 71–76. https://doi.org/10.1016/j.scienta.2019.03.039

Zhan, J., Thrall, P. H., & Burdon, J. J. (2014). Achieving sustainable plant disease management through evolutionary principles. Trends in Plant Science, 19(9), 570–575. https://doi.org/10.1016/j.tplants.2014.04.010

Zhan, J., Thrall, P. H., Papaïx, J., Xie, L., & Burdon, J. J. (2015). Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annual Review of Phytopathology, 53, 19–43. https://doi.org/10.1146/annurev-phyto-080614-120040

Published

2023-07-13

How to Cite

Méndez-Álvarez, D., Badilla-Valverde, Y. ., Murillo-Gamboa, O. ., & Ferreira Alfenas , R. . (2023). Genetic resistance to Ceratocystis fimbriata in elite genotypes of Gmelina arborea. Agronomía Mesoamericana, 34(3), 52968. https://doi.org/10.15517/am.2023.52968