Publicado

2024-04-10

Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos

Insight therapeutic viral diseases: application of SWCNT in drug delivery method

Conhecimento de doenças virais terapêuticas: aplicação de SWCNT na administração de medicamentos

DOI:

https://doi.org/10.15446/rev.colomb.quim.v52n2.111888

Palabras clave:

COVID-19, Nirmatrelvir, nanotubo de carbono de pared simple, (5,5) nanotubo de sillón (es)
COVID-19, Nirmatrelvir, single-walled carbon nanotube, (5.5) armchair CNT (en)
Nirmatrelvir, COVID–19, (5.5) armchair CNT (pt)

Descargas

Autores/as

En este trabajo se ha evaluado el fármaco Nirmatrelvir para tratar el coronavirus utilizando como método de administración de fármacos la adsorción en la superficie de nanotubos de carbono de pared simple (SWCNT), debido al principio de transferencia directa de electrones, la cual ha sido estudiada mediante el método de la teoría funcional de la densidad (DFT). Por lo tanto, se ha implementado el método CAM–B3LYP/6–311+G (d,p) para estimar la susceptibilidad de los SWCNT para adsorber Nirmatrelvir mediante resonancia magnética nuclear y parámetros termodinámicos. Además, el modelo de Onsager ha influido en los datos de resonancia magnética nuclear y en el blindaje químico de los átomos de carbono (C), nitrógeno (N), oxígeno (O) y flúor (F) en el complejo Nirmatrelvir–(5,5) sillón SWCNT. También se ha delineado el potencial eléctrico de resonancia cuadripolar nuclear para algunos átomos de C, N, O y F en el proceso de adsorción de Nirmatrelvir en el (5,5) sillón SWCNT que ha sido calculado por CAM–B3LYP/EPR–III, 6–311+G (d,p). Este estudio sugiere que la combinación de nanotubos de carbono (CNT) y Nirmatrelvir puede ofrecer una fórmula viable para la administración de fármacos, respaldada por cálculos de mecánica cuántica y propiedades fisicoquímicas de la resonancia cuadrupolar nuclear (RCN), la resonancia magnética nuclear (RMN), el infrarrojo (IR) y enfoques ultravioleta/visibles (UV–VIS). En este trabajo, se emplearon farmacología en red, análisis de metabolitos y simulación molecular para dilucidar la base bioquímica de los efectos promotores de la salud del Nirmatrelvir en la administración de fármacos con CNT. Los datos explican que la viabilidad de utilizar SWCNT y Nirmatrelvir se convierte en la norma en el sistema de administración de fármacos, lo que se ha logrado mediante cálculos cuánticos debido a las propiedades fisicoquímicas.

In this work, the drug Nirmatrelvir has been evaluated to treat coronavirus by adsorption on the surface of single-walled carbon nanotube (SWCNT) as a drug delivery method due to the principle of direct electron transfer, which has been studied by density functional theory (DFT) methods. Therefore, the theoretical level CAM–B3LYP/6-311+G (d,p) has been achieved to estimate the susceptibility of SWCNT to adsorb Nirmatrelvir using nuclear magnetic resonance and thermodynamic parameters. Furthermore, Onsager's model has influenced nuclear magnetic resonance data and the chemical shielding of carbon (C), nitrogen (N), oxygen (O), and fluorine (F) atoms in the Nirmatrelvir–(5,5) armchair SWCNT complex. Moreover, the nuclear quadrupole resonance electric potential has been outlined for some C, N, O and F atoms in the adsorption process of Nirmatrelvir on the (5,5) armchair SWCNT which has been calculated by CAM–B3LYP/EPR–III, 6-311+G (d,p). This study suggests that combining carbon nanotube (CNT) and Nirmatrelvir may offer a viable formula for drug delivery, supported by quantum mechanics computations and physicochemical properties of nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR), infrared (IR), and ultraviolet/visible (UV–VIS) approaches. In this work, network pharmacology, metabolite analysis, and molecular simulation were employed to elucidate the biochemical basis of the health-promoting effects of Nirmatrelvir in drug delivery with CNT. The data explains that the feasibility of using SWCNT and Nirmatrelvir becomes the norm in the drug delivery system, which has been achieved by quantum calculations due to the physicochemical properties.

Neste trabalho, o medicamento Nirmatrelvir foi avaliado para tratar o coronavírus através da adsorção na superfície de nanotubos de carbono de parede única (SWCNT) como método de administração de medicamentos, devido ao princípio da transferência direta de elétrons, que foi estudado usando métodos da teoria da densidade funcional (DFT). Portanto, o método CAM–B3LYP/6–311+G (d,p) foi implementado para estimar a suscetibilidade do SWCNT para adsorver o Nirmatrelvir usando ressonância magnética nuclear e parâmetros termodinâmicos. Além disso, o modelo de Onsager influenciou os dados de ressonância magnética nuclear e a blindagem química dos átomos de carbono (C), nitrogênio (N), oxigênio (O) e flúor (F) no complexo Nirmatrelvir–(5,5) armchair SWCNT. O potencial elétrico de ressonância quadrupolo nuclear foi delineado para alguns átomos de C, N, O e F no processo de adsorção de Nirmatrelvir na armchair (5,5) SWCNT que foi calculado por CAM–B3LYP/EPR–III, 6–311+G (d,p). Este estudo sugere que a combinação de nanotubos de carbono (CNT) e Nirmatrelvir pode oferecer uma fórmula viável para administração de medicamentos, apoiada por cálculos de mecânica quântica e propriedades físico-químicas de ressonância quadrupolo nuclear (RQN), ressonância magnética nuclear (RMN), infravermelho (IV) e abordagens ultravioleta/visível (UV-VIS). Neste trabalho, farmacologia de rede, análise de metabólitos e simulação molecular foram empregadas para elucidar a base bioquímica dos efeitos promotores da saúde do Nirmatrelvir na administração de medicamentos com CNT. Ou seja, os dados explicam que a viabilidade do uso de SWCNT e Nirmatrelvir passa a ser a norma no sistema de entrega de medicamentos, o que tem sido alcançado por cálculos quânticos devido às propriedades físico-químicas.

Referencias

F. Mollaamin y M. Monajjemi, “B5N10 Nanocarrier Functionalized with Al, C, Si Atoms: A Drug Delivery Method for Infectious Disease Remedy”, OBM Genetics, vol. 8, nro. 1, pp. 1–14, ene. 2024. DOI: https://doi.org/10.21926/obm.genet.2401214 DOI: https://doi.org/10.21926/obm.genet.2401214

F. Mollaamin, S. Shahriari y M. Monajjemi, “Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method”, J Chil Chem Soc., vol. 68, nro. 1, pp. 5796–5801, 2023. DOI: https://doi.org/10.4067/S0717-97072023000105796 DOI: https://doi.org/10.4067/S0717-97072023000105796

T. M. Allen, “Drug Delivery Systems: Entering the Mainstream”, Science, vol. 303, nro. 5665, pp.1818–22, ene. 2004. DOI: https://doi.org/10.1126/science.1095833

A. P. Singh, A. Biswas, A. Shukla y P. Maiti, “Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles”, Signal Transduct Target Ther, vol. 30, nro. 4, pp. 33, ene. 2019, DOI: https://doi.org/10.1038/s41392-019-0068-3

M. Monajjemi, M. T. Baie y F. Mollaamin, “Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1–3) complexes: Density functional calculations”, Russian Chemical Bulletin, vol. 59, pp. 886–889, ene. 2010. DOI: https://doi.org/10.1007/s11172-010-0181-5 DOI: https://doi.org/10.1007/s11172-010-0181-5

F. Mollaamin, M. Monajjemi y S.Mohammadi, “Physicochemical Characterization of Antiviral Phytochemicals of Artemisia annua Plant as Therapeutic Potential against Coronavirus Disease: In Silico–Drug Delivery by Density Functional Theory Benchmark”, Journal of Biological Regulators and Homeostatic Agents, vol. 37, nro. 7, pp. 3629–3639, ene. 2023. DOI: https://doi.org/10.23812/j.biol.regul.homeost.agents.20233707.358

F. Mollaamin y M. Monajjemi, “Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations”, J Comput Theor Nanosci, vol. 12, nro. 6, pp.1030–1039, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.3846

X. Cao, W. Deng, M. Fu et al., “Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: in vitro release kinetics and in vitro/in vivo correlations in beagle dogs”, Eur J Pharm Sci, vol. 48, nro. 1-2, pp. 64–71, ene. 2013. DOI: https://doi.org/10.1016/j.ejps.2012.10.012

F. Mollaamin, “Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady”, Trends in Immunotherapy, vol. 7, nro. 2, pp.1–16, ene. 2023. DOI: https://doi.org/10.24294/ti.v7.i2.2329 DOI: https://doi.org/10.24294/ti.v7.i2.2329

C. G. Sutcliffe, A.W. Rimone y W. J. Moss, “Poxviruses”, en Hunter's Tropical Medicine and Emerging Infectious Diseases E-Book, E. T. Ryan, D. R. Hill, T. Solomon, N. Aronson, T. P. Endy, eds., Edinburgh: Elsevier, 2020, pp. 272–277.

E. Harris, “What to Know About Monkeypox”, JAMA, vol. 327, nro. 23, pp. 2278–2279, ene. 2022. DOI: https://doi.org/10.1001/jama.2022.9499 DOI: https://doi.org/10.1001/jama.2022.9499

K. Simpson, D. Heymann, C. S. Brown, W. J. Edmunds, J. Elsgaard et al., “Human monkeypox – After 40 years, an unintended consequence of smallpox eradication”, Vaccine, vol. 38, nro. 33, pp. 5077–5081, ene. 2020. DOI: https://doi.org/10.1016/j.vaccine.2020.04.062 DOI: https://doi.org/10.1016/j.vaccine.2020.04.062

E. M. Bunge, B. Hoet, L. Chen, F. Lienert, H. Weidenthaler, L. R. Baer y R. Steffen, “The changing epidemiology of human monkeypox – A potential threat? A systematic review”, PLoS Negl Trop Dis, vol. 16, nro. 2, ene. 2022. DOI: https://doi.org/10.1371/journal.pntd.0010141 DOI: https://doi.org/10.1371/journal.pntd.0010141

G. Barlow, W.L. Irving, P.J.Moss, “Infectious disease”, en Kumar and Clark's Clinical Medicine, A. Feather, D. Randall, M. Waterhouse, eds., Elsevier, 2020.

L. Alomair, S. Mustafa, M. S. Jafri, W. Alharbi, A. Aljouie, F. Almsned, M. Alawad, Y. A. Bokhari y M. Rashid, “Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication”, Viruses, vol. 14, nro. 11, ene. 2022. DOI: https://doi.org/10.3390/v14112436 DOI: https://doi.org/10.3390/v14112436

Z. Plavec, A. Domanska, X. Liu, P. Laine y L. Paulin, “Varjosalo M, Auvinen P, Wolf S.G, Anastasina M, Butcher SJ, SARS-CoV-2 Production, Purification Methods and UV Inactivation for Proteomics and Structural Studies”, Viruses, vol. 14, nro. 9, ene. 2022. DOI: https://doi.org/10.3390/v14091989 DOI: https://doi.org/10.3390/v14091989

F. Mollaamin y M. Monajjemi, “Graphene Embedded with Transition Metals for Capturing Carbon Dioxide: Gas Detection Study Using QM Methods”, Clean Technol., vol. 5, nro. 1, pp. 403–417, ene. 2023. DOI: https://doi.org/10.3390/cleantechnol5010020 DOI: https://doi.org/10.3390/cleantechnol5010020

O. I. Yarovaya et al., “Borneol Ester Derivatives as Entry Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses”, Viruses, vol. 14, nro. 6, ene. 2022. DOI: https://doi.org/10.3390/v14061295 DOI: https://doi.org/10.3390/v14061295

S. Shahriari, M. Monajjemi, F. Mollaamin, “Determination of proteins specification with SARS- COVID-19 based ligand designing”, J. Chil. Chem. Soc., vol. 67, nro. 2, pp. 5468–5476, ene. 2022. DOI: https://doi.org/10.4067/S0717-97072022000205468 DOI: https://doi.org/10.4067/S0717-97072022000205468

A. Majeed y X. Zhang, “On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments”, COVID, vol. 3, nro. 1, pp. 90–123, ene. 2023. DOI: https://doi.org/10.3390/covid3010006 DOI: https://doi.org/10.3390/covid3010006

G. Bonaccorsi et al., “Economic and social consequences of human mobility restrictions under COVID-19”, Proc Natl Acad Sci USA, vol. 117, nro. 27, pp. 15530–15535, ene. 2020. DOI: https://doi.org/10.1073/pnas.2007658117 DOI: https://doi.org/10.1073/pnas.2007658117

A. Barakat et al., “Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies”, Int. J. Mol. Sci., vol. 23, nro. 19, ene. 2022. DOI: https://doi.org/10.3390/ijms231911861 DOI: https://doi.org/10.3390/ijms231911861

F. Mollaamin y M. Monajjemi, “Thermodynamic research on the inhibitors of coronavirus through drug delivery method”, J. Chil. Chem. Soc., vol. 66, nro. 2, pp. 5195–5205, ene. 2021. DOI: https://doi.org/10.4067/S0717-97072021000205195 DOI: https://doi.org/10.4067/S0717-97072021000205195

T. Sardar, S. S. Nadim, S. Rana y J. Chattopadhyay, “Assessment of lockdown effect in some states and overall India: a predictive mathematical study on COVID-19 outbreak”, Chaos Solitons Fract, vol. 139, nro. 110078, ene. 2020. DOI: https://doi.org/10.1016/j.chaos.2020.110078 DOI: https://doi.org/10.1016/j.chaos.2020.110078

F. Mollaamin y M. Monajjemi, “Thermodynamic and IR Spectral Study of Metal Cations–Anthocyanin Chelation: Mechanism of Formation of Pigments”, Russ. J. Phys. Chem., vol. 94, nro. 9, pp. 1887–1901, ene. 2020. DOI: https://doi.org/10.1134/S0036024420090204 DOI: https://doi.org/10.1134/S0036024420090204

F. Zeng et al., “Association of inflammatory markers with the severity of COVID-19: a meta-analysis”, Int J Infect Dis, vol. 96, pp. 467–474, ene. 2020. DOI: https://doi.org/10.1016/j.ijid.2020.05.055 DOI: https://doi.org/10.1016/j.ijid.2020.05.055

F. Mollaamin, “Physicochemical investigation of anti-COVID19 drugs using several medicinal plants”, J. Chil. Chem. Soc., vol. 67, nro. 2, pp. 5537–5546, ene. 2022. DOI: https://doi.org/10.4067/S0717-97072022000205537 DOI: https://doi.org/10.4067/S0717-97072022000205537

Q. M. S. Jamal, “Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update”, Int. J. Mol. Sci., vol. 23, nro. 21, ene. 2022. DOI: https://doi.org/10.3390/ijms232113564 DOI: https://doi.org/10.3390/ijms232113564

J. Remali y W. M. Aizat, “A review on plant bioactive compounds and their modes of action against coronavirus infection”, Front. Pharmacol, vol. 11, ene. 2021. DOI: https://doi.org/10.3389/fphar.2020.589044 DOI: https://doi.org/10.3389/fphar.2020.589044

S. Singh y M. F. Sk, A. Sonawane, P. Kar y S. Sadhukhan, “Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via rna-dependent RNA polymerase (rdrp) inhibition: An in-silico analysis”, J. Biomol. Struct. Dyn., vol. 39, nro. 16, pp. 6249–6264, ene. 2021. DOI: https://doi.org/10.1080/07391102.2020.1796810 DOI: https://doi.org/10.1080/07391102.2020.1796810

T. Capell, R. M. Twyman, V. Armario-Najera, J. K. C. Ma, S. Schillberg y P. Christou, “Potential applications of plant biotechnology against SARS-CoV-2”, Trends Plant Sci., vol. 25, nro. 7, pp. 635–643, ene. 2020. DOI: https://doi.org/10.1016/j.tplants.2020.04.009 DOI: https://doi.org/10.1016/j.tplants.2020.04.009

F. Mollaamin y M. Monajjemi, “Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study”, Russ. J. Phys. Chem. B, vol. 17, nro. 3, pp. 658–672, ene. 2023, DOI: https://doi.org/10.1134/S1990793123030223 DOI: https://doi.org/10.1134/S1990793123030223

S. Bibi, M. S. Khan, S. A. El-Kafrawy, T. A. Alandijany, M. M. El-Daly, Q. Yousafi, D. Fatima, A. A. Faizo, L. H. Bajrai y E. I. Azhar, “Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3clpro”, Saudi Pharm. J., vol. 30, nro. 7, pp. 979–1002, ene. 2022. DOI: https://doi.org/10.1016/j.jsps.2022.05.003 DOI: https://doi.org/10.1016/j.jsps.2022.05.003

T. Pillaiyar, M. Manickam, V. Namasivayam, Y.Hayashi y S. H. Jung, “An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy”, J Med Chem., vol. 59, nro. 14, pp. 6595–6628, ene. 2016. DOI: https://doi.org/10.1021/acs.jmedchem.5b01461 DOI: https://doi.org/10.1021/acs.jmedchem.5b01461

D. R. Owen et al. “An oral SARS-CoV-2 MPRO inhibitor clinical candidate for the treatment of COVID-19”, Science, vol. 374, nro. 6575, pp. 1586–1593, ene. 2021. DOI: https://doi.org/10.1126/science.abl4784 DOI: https://doi.org/10.1126/science.abl4784

M. Monajjemi, F. Mollaamin y S. Shojaei, “An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants”, Biointerface Res. Appl. Chem., vol. 10, nro. 3, pp. 5575–5585, ene. 2020, DOI: https://doi.org/10.33263/BRIAC103.575585 DOI: https://doi.org/10.33263/BRIAC103.575585

E. Takashita et al., “Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2”, N Engl J Med, vol. 386, nro. 15, pp. 1475–1477, ene. 2022. DOI: https://doi.org/10.1056/NEJMc2201933 DOI: https://doi.org/10.1056/NEJMc2201933

L. Vangeel et al., “Remdesivir, molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern”, Antiviral Res, vol. 198, nro. 105252, ene. 2022. DOI: https://doi.org/10.1016/j.antiviral.2022.105252 DOI: https://doi.org/10.1016/j.antiviral.2022.105252

S. E. Greasley et al., “Structural basis for the in vitro efficacy of Nirmatrelvir against SARS-CoV-2 variants”, J Biol Chem, vol. 298, nro. 6, ene. 2022. DOI: https://doi.org/10.1016/j.jbc.2022.101972 DOI: https://doi.org/10.1016/j.jbc.2022.101972

M. Imai et al., “Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB”, N Engl J Med, vol. 388, nro. 1, pp. 89–91, ene. 2023. DOI: https://doi.org/10.1056/NEJMc2214302 DOI: https://doi.org/10.1056/NEJMc2214302

F. Mollaamin y M. Monajjemi, “Molecular drug discovery of potential inhibitor of covid–19 using several medicinal plant ingredients: a promising therapy for viral disease”, Revista de la Facultad de Ciencias, vol. 13, nro. 1, pp. 141–158, ene. 2024. DOI: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288

F. Mollaamin y M. Monajjemi, “Application of DFT/TD-DFT Frameworks in the Drug Delivery Mechanism: Investigation of Chelated Bisphosphonate with Transition Metal Cations in Bone Treatment”, Chemistry, vol. 5, nro. 1, pp. 365–380, ene. 2023. DOI: https://doi.org/10.3390/chemistry5010027 DOI: https://doi.org/10.3390/chemistry5010027

J. Li, M. Zeng, H. Shan y C. Tong, “Microneedle Patches as Drug and Vaccine Delivery Platform”, Current Medicinal Chemistry, vol. 24, nro. 22 pp. 2413–2422, ene. 2017. DOI: https://doi.org/10.2174/0929867324666170526124053 DOI: https://doi.org/10.2174/0929867324666170526124053

F. Mollaamin y M, Monajjemi, “In Situ Drug Delivery Investigation through Characterization and Application of Carbon-Based Nanomaterials: A Promising Approach for Treating Viral Diseases”, J. Biol. Regul. Homeost. Agents., vol. 38, nro. 3, pp. 1961–1973, ene. 2024. DOI: https://doi.org/10.23812/j.biol.regul.homeost.agents.20243803.153

T. M. Allen, “Drug Delivery Systems: Entering the Mainstream”, Science, vol. 303, nro. 5665, pp. 1818–1822, ene. 2004, DOI: https://doi.org/10.1126/science.1095833 DOI: https://doi.org/10.1126/science.1095833

A. P. Singh, A. Biswas, A. Shukla y P. Maiti, “Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles”, Signal Transduction and Targeted Therapy, vol. 4, nro. 33, ene. 2019. DOI: https://doi.org/10.1038/s41392-019-0068-3 DOI: https://doi.org/10.1038/s41392-019-0068-3

F. Mollaamin y M. Monajjemi, “Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes”, Rev. Colomb. Cienc. Quím. Farm., vol. 52, nro. 2, pp. 741–765, ene. 2023, DOI: https://doi.org/10.15446/rcciquifa.v52n2.110734

B. Ghalandari, M. Monajjemi y F. Mollaamin, “Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery”, J Comput Theor Nanosci, vol. 8, nro. 7, pp. 1212–1219, ene. 2011. DOI: https://doi.org/10.1166/jctn.2011.1801 DOI: https://doi.org/10.1166/jctn.2011.1801

F. Mollaamin y M. Monajjemi, “Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations”, J. Comput. Theor. Nanosci, nro. 12, pp. 1030–1039, 2015. DOI: https://doi.org/10.1166/jctn.2015.3846 DOI: https://doi.org/10.1166/jctn.2015.3846

X. Cao et al., “Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: in vitro release kinetics and in vitro/in vivo correlations in beagle dogs”, European Journal of Pharmaceutical Sciences, vol. 48, nro. 1–2, pp. 64–71, ene. 2013. DOI: https://doi.org/10.1016/j.ejps.2012.10.012 DOI: https://doi.org/10.1016/j.ejps.2012.10.012

F. Mollaamin, “Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy”, Computation, vol. 11, nro. 4, ene. 2023. DOI: https://doi.org/10.3390/computation11040084. DOI: https://doi.org/10.3390/computation11040084

L. Zhang, H. Xue, Z. Cao, A. Keefe, J. Wang y S. Jiang, “Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance”, Biomaterials, vol. 32, nro. 20, pp. 4604–4608, ene. 2011. DOI: https://doi.org/10.1016/j.biomaterials.2011.02.064 DOI: https://doi.org/10.1016/j.biomaterials.2011.02.064

B. Khalili Hadad, F. Mollaamin y M. Monajjemi, “Biophysical chemistry of macrocycles for drug delivery: A theoretical study”, Russian Chemical Bulletin, vol. 60, nro. 2, pp. 238–241, ene. 2011. DOI: https://doi.org/10.1007/s11172-011-0039-5 DOI: https://doi.org/10.1007/s11172-011-0039-5

F. Mollaamin, S. Shahriari y M. Monajjemi, “Treating omicron ba.4 & ba.5 via herbal antioxidant asafoetida: a dft study of carbon nanocarrier in drug delivery”, J. Chil. Chem. Soc, vol. 68, nro. 1, pp. 5781–5786, ene. 2023. DOI: https://doi.org/10.4067/S0717-97072023000105781 DOI: https://doi.org/10.4067/S0717-97072023000105781

M. Monajjemi, M. Noei y F. Mollaamin, “Design of fMet-tRNA and Calculation of its Bonding Properties by Quantum Me-chanics”, Nucleosides, Nucleotides & Nucleic Acids, vol. 29, nro. 9, pp. 676–683, ene. 2010. DOI: https://doi.org/10.1080/15257771003781642 DOI: https://doi.org/10.1080/15257771003781642

F. Mollaamin, “Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory/Electron Paramagnetic Resonance”, Journal of Computational and Theoretical Nanoscience, vol. 11, nro. 11, pp. 2393–2398, ene. 2014. DOI: https://doi.org/10.1166/jctn.2014.3653 DOI: https://doi.org/10.1166/jctn.2014.3653

F. Mollaamin y M. Monajjemi, “Trapping of toxic heavy metals from water by GN–nanocage: Application of nanomaterials for contaminant removal technique”, J. Mol. Struct, vol. 1300, nro. 137214, ene. 2024. DOI: https://doi.org/10.1016/j.molstruc.2023.137214 DOI: https://doi.org/10.1016/j.molstruc.2023.137214

F. Mollaamin y M. Monajjemi, “Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT”, Int J Quantum Chem, vol. 124, nro. 2, ene.2024. DOI: https://doi.org/10.1002/qua.27348 DOI: https://doi.org/10.1002/qua.27348

M. Monajjemi, H. Baheri y F. Mollaamin, “A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given”, Journal of Structural Chemistry, vol. 52, nro. 1, pp. 54–59, ene. 2011. DOI: https://doi.org/10.1134/S0022476611010070 DOI: https://doi.org/10.1134/S0022476611010070

A. Tahan, F. Mollaamin y M. Monajjemi, “Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy”, Russian Journal of Physical Chemistry A, vol. 83, nro. 4, pp. 587–597, ene. 2009. DOI: https://doi.org/10.1134/S003602440904013X DOI: https://doi.org/10.1134/S003602440904013X

M. Monajjemi, M. Khaleghian, N. Tadayonpour y F. Mollaamin, “The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study”, Int J Nanosci, vol. 9, nro. 5, pp. 517–529, ene. 2010. DOI: https://doi.org/10.1142/S0219581X10007071 DOI: https://doi.org/10.1142/S0219581X10007071

M. A. A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin y M. Monajjemi, “Density functional theory study and anti-cancer properties of shyshaq plant: In viewpoint of nano biotechnology”, J. Comput. Theor. Nanosci, vol. 12, nro. 11, pp. 4358–4367, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.4366 DOI: https://doi.org/10.1166/jctn.2015.4366

F. Mollaamin, A. Ilkhani, N. Sakhaei, B. Bonsakhteh, A. Faridchehr, S.Tohidi y M. Monajjemi, “Thermodynamic and Solvent Effect on Dynamic Structures of Nano Bilayer-Cell Membrane: Hydrogen Bonding Study”, J. Comput. Theor. Nanosci., vol. 12, nro. 10, pp. 3148–3154, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.4092 DOI: https://doi.org/10.1166/jctn.2015.4092

F. Mollaamin y M. Monajjemi, “Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method”, C—Journal of Carbon Research, vol. 9, nro. 2, ene. 2023. DOI: https://doi.org/10.3390/c9020061 DOI: https://doi.org/10.3390/c9020061

M. Khaleghian, M. Zahmatkesh, F. Mollaamin y M. Monajjemi, “Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study”, Fuller. Nanotub. Carbon Nanostructures, vol. 19, nro. 4, pp. 251–261, ene. 2011. DOI: https://doi.org/10.1080/15363831003721757 DOI: https://doi.org/10.1080/15363831003721757

M. J. Frisch et al. Gaussian 16, Revision C.01, Gaussian Inc., Wallingford CT, ene. 2016.

A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior”, Phys. Rev. A., vol. 38, nro. 6, pp. 3098–3100, ene. 1988. DOI: https://doi.org/10.1103/PhysRevA.38.3098 DOI: https://doi.org/10.1103/PhysRevA.38.3098

K. Bakhshi, F. Mollaamin y M. Monajjemi, “Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA)”, J. Comput. Theor. Nanosci., vol. 8, nro. 4, pp. 763–768, ene. 2011. DOI: https://doi.org/10.1166/jctn.2011.1750 DOI: https://doi.org/10.1166/jctn.2011.1750

M. Monajjemi, J. Najafpour y F. Mollaamin, “(3,3)4 Armchair carbon nanotube in connection with PNP and NPN junctions: Ab Initio and DFT-based studies”, Fullerenes Nanotubes and Carbon Nanostructures, vol. 21, nro. 3, pp. 213–232, ene. 2013. DOI: https://doi.org/10.1080/1536383X.2011.597010 DOI: https://doi.org/10.1080/1536383X.2011.597010

F. Mollaamin y M. Monajjemi, “Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach”, MOLECULAR SIMULATION, vol. 49, nro. 4, pp. 365–376, ene. 2023. DOI: https://doi.org/10.1080/08927022.2022.2159996 DOI: https://doi.org/10.1080/08927022.2022.2159996

C. Lee, W. Yang y R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density”, Phys. Rev. B, vol. 37, nro. 2, pp. 785–789, ene. 1988. DOI: https://doi.org/10.1103/PhysRevB.37.785 DOI: https://doi.org/10.1103/PhysRevB.37.785

F. Mollaamin, S. Shahriari, M. Monajjemi y Z. Khalaj, “Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption”, J. Clust. Sci., vol. 34, nro. 3, pp.1547–1562, ene. 2023. DOI: https://doi.org/10.1007/s10876-022-02335-1 DOI: https://doi.org/10.1007/s10876-022-02335-1

C. J. Cramer y D. G. Truhlar, “PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model”, J. Comp. Chem., vol. 13, nro. 9, pp.1089–1097, ene. 1992. DOI: https://doi.org/10.1002/jcc.540130907 DOI: https://doi.org/10.1002/jcc.540130907

F. Mollaamin y M. Monajjemi, “Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sen-sors for NO, NO2, and NH3 adsorbing: A DFT study”, J. Mol. Model., vol. 29, nro. 6, pp. 170, ene. 2023. DOI: https://doi.org/10.1007/s00894-023-05567-8 DOI: https://doi.org/10.1007/s00894-023-05567-8

C. C. Chambers, G. D. Hawkins, C. J. Cramer y D. G. Truhlar, “Model for aqueous solvation based on class IV atomic charges and first solvation shell effects”, J.Phys.Chem., vol. 100, nro. 40, pp. 16385–16398, ene. 1996. DOI: https://doi.org/10.1021/jp9610776 DOI: https://doi.org/10.1021/jp9610776

F. Mollaamin y M. Monajjemi, “Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective”, J. Mol. Model., vol. 29, nro. 4, ene. 2023. DOI: https://doi.org/10.1007/s00894-023-05526-3 DOI: https://doi.org/10.1007/s00894-023-05526-3

L. J. Onsager, “Electric Moments of Molecules in Liquids”, J. Am. Chem. Soc., vol. 58, nro. 8, pp. 1486–1493, ene. 1936. DOI: https://doi.org/10.1021/ja01299a050 DOI: https://doi.org/10.1021/ja01299a050

F. Mollaamin y M. Monajjemi, “In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors”, J Clust Sci, vol. 34, nro. 6, pp. 2901–2918, ene. 2023. DOI: https://doi.org/10.1007/s10876-023-02436-5 DOI: https://doi.org/10.1007/s10876-023-02436-5

E. M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin y M. Monajjemi, “Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives”, Phys Chem Liquids, vol. 49, nro. 5, pp. 561–571, ene. 2011. DOI: https://doi.org/10.1080/00319101003698992 DOI: https://doi.org/10.1080/00319101003698992

F. Mollaamin, M. Monajjemi, S. Salemi y M. T. Baei, “A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube”, Fuller. Nanotub. Carbon Nanostructures, vol. 19, nro. 3, pp. 182–196, ene. 2011. DOI: https://doi.org/10.1080/15363831003782932 DOI: https://doi.org/10.1080/15363831003782932

M. Monajjemi, N. Farahani y F. Mollaamin, “Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranas”, Phys. Chem. Liq, vol. 50, nro. 2, pp. 161–172, ene. 2012. DOI: https://doi.org/10.1080/00319104.2010.527842 DOI: https://doi.org/10.1080/00319104.2010.527842

F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili Hadad y M. Monajjemi, “Theoretical Study of Different Solvents and Temperatures Effects on Single-Walled Carbon Nanotube and Temozolomide Drug: A QM/MM Study”, Fullerenes, Nanotubes and Carbon Nanostructures, vol. 19, nro. 7, pp. 653–667, ene. 2011. DOI: https://doi.org/10.1080/1536383X.2010.504956 DOI: https://doi.org/10.1080/1536383X.2010.504956

L. Rauch, R. Hein, T. Biedermann, K. Eyerich y F. Lauffer, “Bisphosphonates for the Treatment of Calcinosis Cutis-A Retrospective Single-Center Study”, Biomedicines, vol. 9, nro. 11, ene. 2021. DOI: https://doi.org/10.3390/biomedicines9111698 DOI: https://doi.org/10.3390/biomedicines9111698

R. A. Fry, K. D. Kwon, S. Komarneni, J. D. Kubicki y K. T. Mueller, “Solid-State NMR and Computational Chemistry Study of Mononucleotides Adsorbed to Alumina”, Langmuir, vol. 22, nro. 22, pp. 9281–9286, ene. 2006. DOI: https://doi.org/10.1021/la061561s DOI: https://doi.org/10.1021/la061561s

M. Monajjemi, L. Mahdavian, F. Mollaamin y M. Khaleghian, “Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study”, Russ. J. Inorg. Chem, vol. 54, nro. 9. pp. 1465–1473, ene. 2009. DOI: https://doi.org/10.1134/S0036023609090216 DOI: https://doi.org/10.1134/S0036023609090216

F. Mollaamin y M. Monajjemi, “Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method”, Sensor Review, vol. 43, nro. 4, pp. 266–279, ene. 2023. DOI: https://doi.org/10.1108/SR-03-2023-0040 DOI: https://doi.org/10.1108/SR-03-2023-0040

H. A. Young, Freedman RD. Sears and Zemansky's University Physics with Modern Physics, Boston: Addison-Wesley, 2012.

Cómo citar

IEEE

[1]
F. Mollaamin, «Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos», Rev. Colomb. Quim., vol. 52, n.º 2, pp. 28–35, abr. 2024.

ACM

[1]
Mollaamin, F. 2024. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Revista Colombiana de Química. 52, 2 (abr. 2024), 28–35. DOI:https://doi.org/10.15446/rev.colomb.quim.v52n2.111888.

ACS

(1)
Mollaamin, F. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Rev. Colomb. Quim. 2024, 52, 28-35.

APA

Mollaamin, F. (2024). Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Revista Colombiana de Química, 52(2), 28–35. https://doi.org/10.15446/rev.colomb.quim.v52n2.111888

ABNT

MOLLAAMIN, F. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Revista Colombiana de Química, [S. l.], v. 52, n. 2, p. 28–35, 2024. DOI: 10.15446/rev.colomb.quim.v52n2.111888. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/111888. Acesso em: 4 jun. 2024.

Chicago

Mollaamin, Fatemeh. 2024. «Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos». Revista Colombiana De Química 52 (2):28-35. https://doi.org/10.15446/rev.colomb.quim.v52n2.111888.

Harvard

Mollaamin, F. (2024) «Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos», Revista Colombiana de Química, 52(2), pp. 28–35. doi: 10.15446/rev.colomb.quim.v52n2.111888.

MLA

Mollaamin, F. «Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos». Revista Colombiana de Química, vol. 52, n.º 2, abril de 2024, pp. 28-35, doi:10.15446/rev.colomb.quim.v52n2.111888.

Turabian

Mollaamin, Fatemeh. «Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos». Revista Colombiana de Química 52, no. 2 (abril 10, 2024): 28–35. Accedido junio 4, 2024. https://revistas.unal.edu.co/index.php/rcolquim/article/view/111888.

Vancouver

1.
Mollaamin F. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Rev. Colomb. Quim. [Internet]. 10 de abril de 2024 [citado 4 de junio de 2024];52(2):28-35. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/111888

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

250

Descargas

Los datos de descargas todavía no están disponibles.