Publicado

2022-11-10

Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis

Mecanismos involucrados en la resistencia a carbapenémicos entre aislamientos de Acinetobacter baumannii recuperados en Brasil: una revisión sistemática y metanálisis

Mecanismos envolvidos na resistência a carbapenêmicos entre isolados de Acinetobacter baumannii recuperados no Brasil: Uma revisão sistemática e metanálise

DOI:

https://doi.org/10.15446/rcciquifa.v51n2.96918

Palabras clave:

Acinetobacter baumannii, Brazil, resistance, carbapenem, tigecycline, colistin (en)
Acinetobacter baumannii, Brasil, resistencia, carbapenem, tigeciclina, colistina (es)
Acinetobacter baumannii, Brasil, resistência, carbapenem, tigeciclina, colistin (pt)

Autores/as

  • Adriell Pieve de Castro Universidade Federal de São João del-Rei. Laboratório de Diagnóstico Laboratorial e Microbiologia Clínica. Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais https://orcid.org/0000-0002-1260-5619
  • William Gustavo de Lima Universidade Federal de São João del-Rei. Laboratório de Diagnóstico Laboratorial e Microbiologia Clínica. Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais.
  • Cristina Sanches Universidade Federal de São João del-Rei. Laboratório de Diagnóstico Laboratorial e Microbiologia Clínica. Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais.
  • Magna Cristina de Paiva Universidade Federal de São João Del-Rei. Laboratório de Diagnóstico Microbiológico, Campus Centro Oeste Dona Lindu. 400 Sebastião Gonçalves Coelho street, Chanadour, Divinópolis, Minas Gerais.

Introduction: Infections caused by carbapenem-resistant Acinetobacter baumannii(CRAB) is a health problem due to the limited therapeutic options available. This study was carried out to evaluate the main mechanisms of resistance of carbapenems in CRAB in the last 10 years in Brazil and to describe the susceptibility profile to tigecycline and polymyxins in these isolates. Material and methods: A systematic review was carried out according to Prisma in PUBMED/MEDLINE, Scopus, SciELO, Biblioteca Virtual de Saúde (BVS) and Cochrane Library. Data regarding enzyme resistance to carbapenems were evaluated by meta-analysis according to the random effect. Results: 21 articles were selected according to inclusion and exclu-sion criteria that evaluated 1096 CRAB. Most of the studies were carried out in the southern (33.3 %) and southeast (23.8 %) regions of Brazil (33.3 %) and in 2016 and 2018. According to the meta-analyzes, OXA-type carbapenemase was the main mechanism involved in the low susceptibility to carbapenems in CRAB (98%; 95% CI: 0.91, 0.99; I² = 95%), with blaOXA-23-like(91 %; 95 % CI: 0.76; 0.97; I² = 97 %) or blaOXA-51-like/ ISAba1 (84 %; 95 % CI: 0.15, 0.99; I² = 98 %) genes, followed by metallo-β-lactamases (MBL) (12 %, 95 % CI: 0.09, 0.15, I² = 99 %) and Klebsiella pneumoniae carbapenemase (KPC) (6 %, 95 % CI: 0.04; 0.08; I² = 87 %). Conclu-sion: The included studies showed that susceptibility to colistin (99 %) and tigecy-cline (93 %) remains high and was not affected by carbapenem resistance.

Introducción: las infecciones por Acinetobacter baumannii resistente a carbapené-micos (CRAB) es un problema de salud debido a las limitadas opciones terapéu-ticas disponibles. Este estudio se realizó para evaluar los principales mecanismos de resistencia de los carbapenémicos en CRAB en los últimos 10 años en Brasil y describir el perfil de susceptibilidad a tigeciclina y polimixinas en estos aislados. Material y métodos: se realizó una revisión sistemática de acuerdo con Prisma en PUBMED/MEDLINE, Scopus, SciELO, Biblioteca Virtual de Saúde (BVS) y Cochrane Library. Los datos referentes a resistencia enzimática a los carbapenémicos se evaluaron mediante metaanálisis según el efecto aleatorio. Resultados: se selec-cionaron 21 artículos según criterios de inclusión y exclusión que evaluaron 1.096 CRAB. La mayoría de los estudios se llevaron a cabo en las regiones sur (33,3%) y sureste (23,8 %) de Brasil (33,3 %) y en los años 2016 y 2018. Según los metaanálisis, la carbapenemasa tipo OXA fue el principal mecanismo implicado en la baja suscep-tibilidad a los carbapenémicos en CRAB (98 %; IC 95 %: 0,91; 0,99; I² = 95 %), con blaOXA-23-like (91 %; 95 % CI: 0,76; 0,97; I² = 97 %) o blaOXA-51-like/ ISAba1 (84 %; 95 % CI: 0,15; 0,99 ; I² = 98 %) genes, seguida de metalo-β-lactamasas (MBL ) (12 %; IC95 %: 0,09; 0,15; I² = 99 %) y Klebsiella pneumoniae carbapenemase (KPC) (6 %; IC95 %: 0,04; 0,08; I² = 87 %). Conclusión: los estudios incluidos mostraron que la susceptibilidad a la colistina (99 %) y tigeciclina (93 %) sigue siendo alta y no se ve afectada por la resistencia a los carbapenémicos.

Introdução: as infecções causadas por Acinetobacter baumannii resistente aos carbapenêmicos (CRAB) são um problema de saúde devido às limitadas opções terapêuticas disponíveis. Este estudo foi realizado para avaliar os principais meca-nismos de resistência aos carbapenêmicos em CRAB nos últimos 10 anos no Brasil e descrever o perfil de susceptibilidade à tigeciclina e às polimixinas nesses isolados. Material e métodos: foi conduzida uma revisão sistemática segundo o Prisma nas bases de dados PUBMED/MEDLINE, Scopus, SciELO, Biblioteca Virtual de Saúde (BVS) e Biblioteca Cochrane. Os dados relativos à resistência enzimática aos carbapenêmicos foram avaliados por meta-análises de acordo com o efeito aleatório. Resultados: foram selecionados 21 artigos de acordo com os critérios de inclusão e exclusão que avaliaram 1.096 CRAB. A maioria dos estudos foi realizada nas regiões Sul (33,3 %) e Sudeste (23,8 %) do Brasil e nos anos de 2016 e 2018. De acordo com as metanálises, a carbapenemase do tipo OXA foi o principal mecanismo envolvido na baixa susceptibilidade aos carbapenêmicos em CRAB (98 %; 95% IC: 0.91, 0.99; I² = 95 %), com blaOXA-23-like(91 %; 95 %; IC: 0,76; 0,97; I² = 97 %) ou blaOXA -51-like / ISAba1(84 %; 95 % IC: 0.15, 0.99; I² = 98 %) genes, seguidos por metalo-β-lactamases (MBL) (12 %, 95 % IC: 0,09, 0,15, I² = 99 %) e Klebsiella pneumoniae carbapene-mase (KPC) (6 %, IC 95 %: 0,04; 0,08; I² = 87 %). Conclusão: os estudos incluídos mostraram que a susceptibilidade à colistina (99 %) e tigeciclina (93 %) permanece alta e não foi afetada pela resistência aos carbapenêmicos.

Referencias

F. Perez, A.M. Hujer, K.M. Hujer, B.K. Decker, P.N. Rather, R.A Bonomo, Global challenge of multidrug-resistent Acinetobacter baumannii, Antimicrob. Agents Chemother., 51, 3471-3484 (2007). DOI: https://doi.org/10.1128/AAC.01464-06

M.D. Alcántar-Curiel, R. Rosales-Reyes, M.D Jarillo-Quijada, C. Gayosso-Vázquez, J.L. Fernández-Vázquez, J.E. Toledano-Tableros, S. Giono-Cerezo, P. Garza-Villafuerte, A. López-Huerta, D. Vences-Vences, R. Morfín-Otero, E. Rodríguez-Noriega, M.D.R López-Álvarez, M.D.C. Espinosa-Sotero, J.I. San-tos-Preciado, Carbapenem-resistant Acinetobacter baumannii in three tertiary care hospitals in Mexico: Virulence profiles, innate immune response and clonal dissemination, Front. Microbiol., 10, 2116 (2019). DOI: https://doi.org/10.3389/fmicb.2019.02116

X. Du, X. Xu, J. Yao, K. Deng, S. Chen, Z. Shen, L. Yang, G. Feng, Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter bauman-nii: A systematic review and meta-analysis, Am. J. Infect. Control, 47, 1140-1145 (2019). DOI: https://doi.org/10.1016/j.ajic.2019.03.003

S.H. Lob, D.J. Hoban, D. F. Sahm, R.E. Badal. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii, Int. J. Antimicrob. Agents, 47, 317-323 (2016). DOI: https://doi.org/10.1016/j.ijantimicag.2016.01.015

S.B. Almasaudi, Acinetobacter spp. as nosocomial pathogens: epidemiolog yan resistance features, Saudi J. Biol. Sci., 25, 586-596 (2018). DOI: https://doi.org/10.1016/j.sjbs.2016.02.009

D. Wong, T.B. Nielsen, R.A. Bonomo, P. Pantapalangkoor, B. Luna, B. Spell-berg, Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges, Clin. Microbiol. Rev., 30, 409-447 (2017). DOI: https://doi.org/10.1128/CMR.00058-16

V. Manchanda, S. Sanchaita, S. NP, Multidrug resistant Acinetobacter, J. Glob. Infect. Dis., 2, 291-304 (2010). DOI: https://doi.org/10.4103/0974-777X.68538

Centers of Disease Control and Prevention, Antibiotic Resistance Threats in the United States, Atlanta, URL: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf, accessed May, 2021.

WHO, Guidelines for the prevention and control of carbapenem-resistant Entero-bacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities, URL: http://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178eng.pdf;jsessionid=0AAD6679A11CF41A5327CC1DE8F1E7ED?sequence=1, accessed March, 2020.

K. Bush, The ABCD’s of b-lactamase nomenclature, J. Infect. Chemother., 19, 549-559 (2013). DOI: https://doi.org/10.1007/s10156-013-0640-7

M. Pagano, L. Rocha, J.L.M. Sampaio, A.F. Martins, A.L. Barth, Emergence of OXA-72- producing Acinetobacter baumannii belonging to high-risk clones (CC15 and CC79) in different Brazilian states, Infect. Control Hosp. Epidemiol., 38,252-254 (2016). DOI: https://doi.org/10.1017/ice.2016.287

M. Pagano, L.S. Nunes, M. Niada, A.L. Barth, A.F. Martins, Comparative analy-sis of carbapenem-resistant Acinetobacter baumannii sequence types in Southern Brazil: From the first outbreak (2007–2008) to the endemic period (2013–2014), Microb. Drug Resist., 25, 538-542 (2018). DOI: https://doi.org/10.1089/mdr.2018.0262

B.R.R. Moreira, G.F. Viana, A.C.C. de Moraes, M.S. Bastos, S.A.B. Nishiyama, M.M.A. Szczerepa, C.L. Cardoso, M.C.B. Tognim, Dissemination of Acineto-bacter baumannii OXA-23 in old and new intensive care units without transfer of colonized patients, Infect. Control Hosp. Epidemiol., 39, 1135-1137 (2018). DOI: https://doi.org/10.1017/ice.2018.168

J. Li, R.L. Nation, J.D. Turnidge, R.W. Milne, K. Coulthard, C.R. Rayner, D. Paterson, Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections, Lancet Infect. Dis., 6, 589-601 (2006). DOI: https://doi.org/10.1016/S1473-3099(06)70580-1

F.J. Candel, N. Calvo, J. Head, A. Sánchez, M. Matesanz, E. Culebras, A com-bination of tigecycline, colistin, and meropenem against multidrugresistant Acinetobacter baumannii bacteremia in a renal transplant recipient: pharmaco-dynamic and microbiological aspects, Rev. Esp. Quimioter., 23, 103-108 (2010).

C. Santamaría, A. Mykietiuk, E. Temporiti, M.E. Stryjewski, F. Herrera, P. Bon-vehi, Nephrotoxicity associated with the use of intravenous colistin, Scand. J. Infect. Dis., 41, 767-769 (2009). DOI: https://doi.org/10.1080/00365540903147001

D.J. Payne, M.N. Gwynn, D.J. Holmes, D. Pompliano, Drugs for bad bugs: Con-fronting the challenges of antibacterial Discovery, Nat. Rev. Drug. Discov., 6, 29-40 (2007). DOI: https://doi.org/10.1038/nrd2201

L.M. Dalla-Costa, J.M. Coelho, H.A. Souza, M.E. Castro, C.J. Stier, K.L. Bra-gagnolo, A. Rea-Neto, S.R. Penteado-Filho, D.M. Livermore, N. Woodford, Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil, J. Clin. Microbiol., 41, 3403-3406 (2003). DOI: https://doi.org/10.1128/JCM.41.7.3403-3406.2003

E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet, C. Pulcini, G. Kahlmeter, J. Kluytmans, Y. Carmeli, M. Quellette, K. Outterson, J. Patel, M. Cavaleri, E.M. Cox, C.R. Houchens, M.L. Grayson, P. Hansen, N. Singh, U. Theuretzbacher, N. Magrini, WHO Pathogens Priority List Working Group, Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet, 18, 318-327 (2017). DOI: https://doi.org/10.1016/S1473-3099(17)30753-3

J.P.T. Higgins, S. Green (editors), Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 [updated March 2011], The Cochrane Collabora-tion, 2011, URL: www.handbook.cochrane.org, accessed January, 2020.

A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gotzsche, J.P.A. Ioanni-dis, M. Clarke, P. J. Devereaux, J. Kleijnen, D. Moher, The Prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health-care interventions: Explanation and elaboration, BMJ, 339, 2700 (2009). DOI: https://doi.org/10.1136/bmj.b2700

J.R. Landi, G.G. Koch, The measurement of observer agreement for categorical data, Biometrics, 33, 159-174 (1977). DOI: https://doi.org/10.2307/2529310

V.C. Kobs, J.A. Ferreira, T.A. Bobrowicz, L.E. Ferreira, R.C. Deglmann, G.A. Westphal, P.H.C. França, The role of the genetic elements blaoxa and ISAba1 in the Acinetobacter calcoaceticus-Acinetobacter baumannii complex in carbapenem resistance in the hospital setting, Rev. Soc. Bras. Med. Trop., 49, 433-440 (2016). DOI: https://doi.org/10.1590/0037-8682-0002-2016

D.B.C. Gomes, G.L. Genteluci, M.J. de Souza, V. Zahner, K.R. Carvalho, M.H.S.V. Bôas, Presence of the blaOXA-72 gene in Acinetobacter baumanniifrom a public hospital in Brazil, J. Global Antimicrob. Resist., 5, 90-91 (2016). DOI: https://doi.org/10.1016/j.jgar.2015.11.007

P.C.S. Ribeiro, A.S. Monteiro, S.G. Marques, S.G. Monteiro, V. Monteiro-Neto, M.M.M. Coqueiro, A.C.G. Marques, R.J.G. Turri, S.G. Santos, M.R.Q. Bomfim, Phenotypic and molecular detection of the blaKPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil, BMC Infect. Dis., 16, 16:737 (2016). DOI: https://doi.org/10.1186/s12879-016-2072-3

F.L. Cavalcanti, C.L. Mendes-Marques, C.R.S. Vasconcelos, T.L. Campos, et al, High Frequency of OXA-253-Producing Acinetobacter baumannii in Different Hospitals in Recife, Brazil, Antimicrobial Agents and Chemotherapy, 61, (1): 01309-16 (2016). DOI: https://doi.org/10.1128/AAC.01309-16

F.C. Neves, W.T. Clemente, N. Lincopan, L.D. Paião, P.R. Neves, R.M. Romane-lli, V.A. Nobre- Junior, Clinical and microbiological characteristics of OXA-23- and OXA-143-producing Acinetobacter baumannii in ICU patients at a teaching hospital, Brazil, Braz. J. Infect. Dis., 20, 556-563 (2016). DOI: https://doi.org/10.1016/j.bjid.2016.08.004

L.C.B. Tavares, F.M. Vasconcellos, W.V. de Sousa, T.T. de Rocchetti, A.L. Mon-delli, A.M. Ferreira, C.H. Camargo, Emergence and persistence of high-risk clo-nes among MDR and XDR A. baumannii at a Brazilian teaching hospital, Front. Microbiol., 9, 2898 (2019). DOI: https://doi.org/10.3389/fmicb.2018.02898

R.O. França, P.S. Costa, G.L. Milanez, M.R.Q. Bomfim, R. Gonçalves, L.M. Farias, V. Nobre, S.G. Santos, Molecular association of pathogenicity and resis-tance to multiple antimicrobials in Acinetobacter baumannii strains recovered from patients with diverse infectious diseases, J. Bras. Patol. Med. Lab., 5, 288-295 (2018). DOI: https://doi.org/10.5935/1676-2444.20180049

K.E. da Silva, W.G. Maciel, J. Croda, R. Cayo, A.C. Ramos, R.O de Sales, M.N.L. Kurihara, N.G. Vasconcelos, A.C. Gales, S. Simionatto, A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit, PLoS One, 13, e0209367 (2018). DOI: https://doi.org/10.1371/journal.pone.0209367

G.D. Cortivo, A. Gutberlet, J. Augustini, L.E. Ferreira, R.C. Deglmann, G.A. Westphal, P.H.C. França, Antimicrobial resistance profiles and oxacillinase genes in carbapenem resistant Acinetobacter baumannii isolated from hospita-lized patients in Santa Catarina, Brazil, Rev. Soc. Bras. Med. Trop., 48, 699-705 (2015). DOI: https://doi.org/10.1590/0037-8682-0233-2015

M. Pillonetto, L. Arend, E.C. Vespero, M. Pelisson, T.P.G. Chagas, A.P.D. Carvalho-Assef, M.D. Asensi, First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil, Antimicrob. Agents Chemother., 12, 7592-7594 (2014). DOI: https://doi.org/10.1128/AAC.03444-14

J.M. Cieslinski, L. Arend, F.F. Tuon, E.P. Silva, R.G.S. Ekermann, L.M. Dalla-Costa, P.G. Higgins, H. Seifert, M. Pilonetto, Molecular epidemiolog y characte-rization of OXA-23 carbapenemase-producing Acinetobacter baumannii isolated from 8 Brazilian hospitals using repetitive sequence–based PCR, Diagn. Micro-biol. Infect. Dis., 77, 337-340 (2013). DOI: https://doi.org/10.1016/j.diagmicrobio.2013.07.018

V.C. Dias, J.A. Resende, A.N. Bastos, V.Q. De Andrade-Basto, R.V. Bastos, C.G. Diniz, V.L. Da Silva, Epidemiological, physiological, and molecular characteris-tics of a Brazilian collection of carbapenem-resistant Acinetobacter baumanniiand Pseudomonas aeruginosa, Microb. Drug Resist., 23, 852 (2017). DOI: https://doi.org/10.1089/mdr.2016.0219

F.K.S.F. De Azevedo, V. Dutra, L. Nakazato, C.M. Mello, M.A. Pepato, A.T.H.I. De Sousa, D.T. Takahara, R.C. Hahn, F.J.D. Souto, Molecular epidemiolog y of multidrug-resistant Acinetobacter baumannii infection in two hospitals in Cen-tral Brazil: the role of ST730 and ST162 in clinical outcomes, J. Med. Microbiol., 68, 31-40 (2019). DOI: https://doi.org/10.1099/jmm.0.000853

S.R.A. Castilho, C.S.d.M. Godoy, A.O. Guilarde, J.L. Cardoso, M.C.P. Andre, A.P. Junqueira- Kipnis, A. Kipnnis, Acinetobacter baumannii strains isolated from patients in intensive care units in Goiânia, Brazil: Molecular and drug sus-ceptibility profiles, PLoS One, 12, e0176790 (2017). DOI: https://doi.org/10.1371/journal.pone.0176790

F.L. Cavalcanti, A.C.S. Almeida, M.A. Vilela, M.A.d.M. Junior, M.M.C. de Morais, T.C. Leal-Balbino, Emergence of extensively drug-resistant OXA-72–producing Acinetobacter baumannii in Recife, Brazil: Risk of clonal dissemina-tion? Diagn. Microbiol. Infect. Dis.,77, 250-251 (2016). DOI: https://doi.org/10.1016/j.diagmicrobio.2013.07.022

A.T.R. Vasconcelos, A.L. Barth, A.P. Zavascki, A.C. Gales, A.S. Levin, B.G. Cabral, D.M. Brasiliense, F. Rossi, G.H.C. Furtado, I.C.R.S. Carneiro, J.O. da Silva, J. Ribeiro, K.V.B. Lima, L. Correa, M.H. Britto, M.T. Silva, M.L. Da Conceição, M. Moreira, M.D.V. Martino, M. R de Freitas, M.S. Oliveira, M.F. Dalben, R.D. Guzman, R. Cayo, R. Morais, S.A.Santos, W.M.B.S. Martins, The changing epidemiolog y of Acinetobacter spp. producing OXA carbapenemases causing bloodstream infections in Brazil: a BrasNet report, Diagn. Microbiol. Infect. Dis., 83, 382-385 (2015). DOI: https://doi.org/10.1016/j.diagmicrobio.2015.08.006

L. Rocha, M. Pagano, J.C. Campos, J.L.M. Sampaio, A.F. Martins, A.L. Barth, Carbapenem resistant Acinetobacter baumannii in Brazil: susceptibility profile and diversity of oxacillinases, J. Bras. Patol. Med. Lab., 53, 358-361 (2017). DOI: https://doi.org/10.5935/1676-2444.20170057

E.L. Fonseca, R.V. Caldart, F.S. Freitas, S.M. Morgado, L.T. Rocha, R.C. San-tos, A.C.P. Vicente, Emergence of XDR international clone IC-6 Acinetobacter baumannii carrying blaOXA-72 and blaCTX-M-115 in the Brazilian Amazon Region, J. Global Antimicrob. Resist., 20, 18-21 (2019). DOI: https://doi.org/10.1016/j.jgar.2019.06.014

A.Y. Peleg, D.L. Paterson, Multidrug-resistant Acinetobacter: A threat to the antibiotic era, Intern. Med. J., 36, 479-482 (2006). DOI: https://doi.org/10.1111/j.1445-5994.2006.01130.x

G. Huang, S. Yin, Y. Gong, X. Zhao, L. Zou, B. Jiang, Z. Dong, Y. Chen, S. Jin, Z. Yuan, Y. Peng, Multilocus sequence typing analysis of carbapenem-resistant Acinetobacter baumannii in a Chinese burns institute, Front. Microbiol., 7, 1717 (2016). DOI: https://doi.org/10.3389/fmicb.2016.01717

P.G. Higgins, T. Schneiders, A. Hamprecht, H. Seifert, In vivo selection of a missense mutation in adeR and conversion of the novel blaOXA-164 gene into blaOXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient, Antimicrob. Agents Chemother., 54, 5021-5027 (2010). DOI: https://doi.org/10.1128/AAC.00598-10

E.I. Robledo, E.E. Aquino, J. Guilhermo, Detection of the KPC Gene in Esche-richia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii during PCR-based nosocomial surveillance study in Puerto Rico, Antimicrob. Agents Chemother., 55, 2968-2970 (2011). DOI: https://doi.org/10.1128/AAC.01633-10

M. Ruiz, S. Marti, F. Fernandez-Cuenca, A. Pascual, J. Vila, Prevalence of IS(Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isola-tes, FEMS Microbiol. Lett., 274, 63–66 (2007). DOI: https://doi.org/10.1111/j.1574-6968.2007.00828.x

W. Scaife, H.K. Young, R.H. Paton, S.G. Amyes, Transferable imipenem-resis-tance in Acinetobacter species from a clinical source, J. Antimicrob. Chemother., 36, 585-586 (1995). DOI: https://doi.org/10.1093/jac/36.3.585

S. Asai, K. Umezawa, H. Iwashita, T. Ohshima, M. Ohshima, M. Ohashi, M. Sasaki, H. Hayashi, M. Matsui, K. Shibayama, S. Inokuchi, H. Miyachi, An outbreak of blaOXA-51-likeand blaOXA-66-positive Acinetobacter baumanniiST208 in the emergency intensive care unit, J. Med. Microbiol., 63, 1517-1523 (2014). DOI: https://doi.org/10.1099/jmm.0.077503-0

L. Poirel, T. Naas, P. Nordmann, Diversity, epidemiolog y, and genetics of class D lactamases, Antimicrob. Agents Chemother., 54: 24-38 (2010). DOI: https://doi.org/10.1128/AAC.01512-08

S. Shoja, M. Moosavian, S. Rostami, F. Abbasi, M.A. Tabatabaiefar, A. Peymani, Characterization of oxacillinase and metallo beta-lactamas genes and molecular typing of clinical isolates of Acinetobacter baumannii in Ahvaz, South-West of Iran, Jundishapur J. Microbiol., 9, e32388 (2016). DOI: https://doi.org/10.5812/jjm.32388

T.L. Luo, A.H. Rickard, U. Srinivasan, K. Kaye, B. Foxman, Association of blaOXA-23 and bap with the persistence of Acinetobacter baumannii within a major healthcare system, Front. Microbiol., 6, 182 (2015). DOI: https://doi.org/10.3389/fmicb.2015.00182

T. Reddy, T. Chopra, D. Marchaim, J.M. Pogue, G. Alangaden, H. Salimnia, D. Boikov, S. Navon- Venezia, R. Akins, P. Selman, S. Dhar, K.S. Kaye, Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system, Antimicrob. Agents Chemother., 54, 2235-2238 (2010). DOI: https://doi.org/10.1128/AAC.01665-09

H.M. Zowawi, A.L. Sartor, H.E. Sidjabat, H.H. Balkhy, T.R. Walsh, S.M. Al Johani, R.Y. AIJindan, M. Alfaresi, E. Ibrahim, A. Al-Jardani, J. Al Salman, A.A. Dashti, K. Johani, D.L. Paterson, Molecular epidemiolog y of carbapenem-resis-tant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: Dominance of OXA-23-type producers, J. Clin. Microbiol., 53, 896-903 (2015). DOI: https://doi.org/10.1128/JCM.02784-14

Brazilian Health Surveillance Agency (Anvisa), Brasil, Boletim Informativo: Segurança do Paciente e Qualidade em Serviço de Saúde nº 9: Relatório da resis-tência microbiana em infecções primárias de corrente sanguínea confirmadas laboratorialmente relacionadas ao uso de cateter venoso central em unidades de terapia intensiva, 2013, URL: https://www20.anvisa.gov.br/segurancadopa-ciente/index.php/publicacoes/item/boletim, accessed July, 2020.

A. Peymani, M.R. Nahaei, S. Farajnia, A. Hasani, A. Mirsalehian, N. Sohrabi, L. Abbasi, High prevalence of metallo-beta lactamase-producing Acinetobacter baumannii in a teaching hospital in Tabriz, Iran, Jpn, J. Infect. Dis, 64, 69-71, 2011. DOI: https://doi.org/10.7883/yoken.64.69

H.C. Maltezou, Metallo-beta-lactamases in Gram-negative bacteria: Introdu-cing the era of pan-resistance? Int. J. Antimicrob. Agents, 33(5), 405 (2009). DOI: https://doi.org/10.1016/j.ijantimicag.2008.09.003

A.A. Ghazawi, R.A. Sonnevend, L. Bonnin, P. Poirel, P. Nordmann, R. Hash-mey, T.A. Rizvi, M.B. Hamadeh, T. Pa’l, NDM-2 carbapenemase-producing Aci-netobacter baumannii in the United Arab Emirates, Clin. Microbiol. Infect., 18, 2009-2011 (2012). DOI: https://doi.org/10.1111/j.1469-0691.2011.03726.x

Y. Chen, Z. Zhou, Y. Jiang, Y. Yu, Emergence of NDM-1-producing Acinetobac-ter baumannii in China, J. Antimicrob. Chemother., 66, 1255-1259 (2011). DOI: https://doi.org/10.1093/jac/dkr082

A. Adler, R. Glick, Z. Lifshitz, Y. Carmeli, Does Acinetobacter baumannii Serve as a source for blaNDM dissemination into Enterobacteriaceae in hospitalized patients? Microbial. Drug. Resist., 24, 150-153 (2018). DOI: https://doi.org/10.1089/mdr.2016.0330

T. Martinez, I. Martinez, G.J. Vazquez, E.E. Aquino, I.E. Robledo, Genetic envi-ronment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomics insights into drug resistance, J. Med. Microbiol., 65, 92 (2016). DOI: https://doi.org/10.1099/jmm.0.000289

C. Caneiras, F. Calisto, G.J. da Silva, L. Lito, J. Melo-Cristino, A. Duarte, First escription of colistin and tigecycline-resistant Acinetobacter baumannii produ-cing KPC-3 carbapenemase in Portugal, Antibiotics, 7, 96 (2018). DOI: https://doi.org/10.3390/antibiotics7040096

SS. Japoni, A.A. Farshad, A. Japoni, Antibacterial susceptibility patterns and cross-resistance of Acinetobacter, isolated from hospitalized patients, Southern Iran, Iran. Red Crescent Med. J., 13, 832-836 (2011).

J. Moradi, F.B. Hashemi, A. Bahador, Antibiotic resistance of Acinetobacter baumannii in Iran: A systemic review of the published literature, Osong Public Health Res. Perspect.,6, 79-86 (2015). DOI: https://doi.org/10.1016/j.phrp.2014.12.006

A.M. Baadani, S.I. Thawadi, N.A. El-Khizzi, A.S. Omrani, Prevalence of colis-tin and tigecycline resistance in Acinetobacter baumannii clinical isolates from 2 hospitals in Riyadh Region over a 2-year period, Saudi Med. J., 34, 24 (2013).

J. Barin, A.F. Martins, B.L. Heineck, A.L. Barth, A.P. Zavascki, Hetero- and adaptive resistance to polymyxin B in OXA-23-producing carbapenem-resis-tant Acinetobacter baumannii isolates, Ann. Clin. Microbiol. Antimicrob., 12, 15 (2013). DOI: https://doi.org/10.1186/1476-0711-12-15

C. Kulah, G. Celebi, E. Aktas, Z. Mengeloglu, F. Comert, H. Ankarali, Unexpec-ted tigecycline resistance among Acinetobacter baumannii isolates: High minor error rate by Etest, J. Chemother., 21, 390-395 (2009). DOI: https://doi.org/10.1179/joc.2009.21.4.390

N.A Al-Sweih, M.A Al-Hubail, V.O. Rotimi, Emergence of tigecycline and colis-tin resistance in Acinetobacter species isolated from patients in Kuwait hospitals,J. Chemother., 23, 13-16 (2011). DOI: https://doi.org/10.1179/joc.2011.23.1.13

T. Guven, G. Yilmaz, H.R. Guner, A. Kaya Kalem, F. Eser, M.A. Tasyaran, Incre-asin resistance of nosocomial Acinetobacter baumannii: Are we going to be defea-ted? Turk. J. Med. Sci., 44, 73-78 (2014). DOI: https://doi.org/10.3906/sag-1211-21

C.H. Liao, H.C. Kung, G.J. Hsu, P-L. Lu, Y.C. Liu, C.M. Chen, C.M. Lee, W. Sun, T.N. Jang, P.C. Chiang, Y.J. Cheng, H.C. Lin, Z.Y. Shi, L.S. Wang, Y.C. Chuang, S.M. Tsao, C.T. Lu, J.W. Liu, C.H. Huang, P.R. Hsueh, In-vitro acti-vity of tigecycline against clinical isolates of Acinetobacter baumannii in Taiwan determined by the broth microdilution and disk diffusion methods, Int. J. Anti-microb. Agents, 32, 192-196 (2008). DOI: https://doi.org/10.1016/S0924-8579(08)70027-X

J.W. Liu, L.S. Wang, Y.J. Cheng, G.J. Hsu, P.L. Lu, Y.C. Liu, C.M. Chen, C.M. Lee, W. Sun, T.N. Jang, P.C. Chiang, Y.C. Chuang, H.C. Lin, Z.Y. Shi, H.C. Kung, C.H. Huang, S.M. Tsao, C.T. Lu, C.H. Liao, P.R. Hsueh, In-vitro activity of tigecycline against clinical isolates of Acinetobacter baumannii in Taiwan, Int. J. Antimicrob. Agents, 32, 188-191 (2008). DOI: https://doi.org/10.1016/S0924-8579(08)70026-8

T.D. Van, Q.D. Dinh, P.D. Vu, T.V. Nguyen, C.V. Pham, T.T. Dao, C.D. Phung, H.T. Hoang, N.T. Tang, N.T. Do, K.V. Nguyen, H. Wertheim, Antibiotic suscep-tibility and molecular epidemiolog y of complex strains isolated from a referral hospital in northern Vietnam, J. Glob. Antimicrob. Resist., 2, 318-321, (2008). DOI: https://doi.org/10.1016/j.jgar.2014.05.003

M. Jiang, Z. Zhang, S. Zhao, Epidemiological characteristics and drug resistance analysis of multidrug-resistant Acinetobacter baumannii in a China hospital at a certain time, Pol. J. Microbiol.,63, 275-281 (2014). DOI: https://doi.org/10.33073/pjm-2014-037

Y. Doi, G.L. Murray, A.Y. Peleg, Acinetobacter baumannii: Evolution of antimi-crobial resistance–treatment options, Semin. Respir. Crit. Care Med., 36, 85-98 (2015). DOI: https://doi.org/10.1055/s-0034-1398388

C. Rizek, J.R. Ferraz, I.M. van der Heijden, M. Giudice, A.K. Mostachio, J. Paez, C. Carrilho, A.S. Levin, S.F. Costa, In vitro activity of potential old and new drugs against multidrug resistant gram-negatives, J. Infect. Chemother.,21, 114-117 (2015). DOI: https://doi.org/10.1016/j.jiac.2014.10.009

S.E. Costello, A.C. Gales, R. Morfin-Otero, R.N. Jones, M. Castanheira, Mecha-nisms of resistance, clonal expansion, and increasing prevalence of Acinetobacter baumannii strains displaying elevated tigecycline MIC values in Latin America,Microb. Drug Resist., 22, 253-258 (2016). DOI: https://doi.org/10.1089/mdr.2015.0168

R.V. Caldart, E.L. Fonseca, F. Freitas, L. Rocha, A.C. Vicente, Acinetobacter bau-mannii infections in Amazon Region driven by extensively drug resistant inter-national clones, 2016-2018, Mem. Inst. Oswaldo Cruz, 114, e19023 (2019). DOI: https://doi.org/10.1590/0074-02760190232

Cómo citar

APA

Pieve de Castro, A., Gustavo de Lima, W., Sanches, C. y Cristina de Paiva, M. (2022). Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(2). https://doi.org/10.15446/rcciquifa.v51n2.96918

ACM

[1]
Pieve de Castro, A., Gustavo de Lima, W., Sanches, C. y Cristina de Paiva, M. 2022. Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas. 51, 2 (oct. 2022). DOI:https://doi.org/10.15446/rcciquifa.v51n2.96918.

ACS

(1)
Pieve de Castro, A.; Gustavo de Lima, W.; Sanches, C.; Cristina de Paiva, M. Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Rev. Colomb. Cienc. Quím. Farm. 2022, 51.

ABNT

PIEVE DE CASTRO, A.; GUSTAVO DE LIMA, W.; SANCHES, C.; CRISTINA DE PAIVA, M. Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 51, n. 2, 2022. DOI: 10.15446/rcciquifa.v51n2.96918. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/96918. Acesso em: 28 abr. 2024.

Chicago

Pieve de Castro, Adriell, William Gustavo de Lima, Cristina Sanches, y Magna Cristina de Paiva. 2022. «Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis». Revista Colombiana De Ciencias Químico-Farmacéuticas 51 (2). https://doi.org/10.15446/rcciquifa.v51n2.96918.

Harvard

Pieve de Castro, A., Gustavo de Lima, W., Sanches, C. y Cristina de Paiva, M. (2022) «Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis», Revista Colombiana de Ciencias Químico-Farmacéuticas, 51(2). doi: 10.15446/rcciquifa.v51n2.96918.

IEEE

[1]
A. Pieve de Castro, W. Gustavo de Lima, C. Sanches, y M. Cristina de Paiva, «Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis», Rev. Colomb. Cienc. Quím. Farm., vol. 51, n.º 2, oct. 2022.

MLA

Pieve de Castro, A., W. Gustavo de Lima, C. Sanches, y M. Cristina de Paiva. «Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 51, n.º 2, octubre de 2022, doi:10.15446/rcciquifa.v51n2.96918.

Turabian

Pieve de Castro, Adriell, William Gustavo de Lima, Cristina Sanches, y Magna Cristina de Paiva. «Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis». Revista Colombiana de Ciencias Químico-Farmacéuticas 51, no. 2 (octubre 23, 2022). Accedido abril 28, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/96918.

Vancouver

1.
Pieve de Castro A, Gustavo de Lima W, Sanches C, Cristina de Paiva M. Mechanisms involved in resistance to carbapenems among Acinetobacter baumannii isolates recovered in Brazil: A systematic review and meta-analysis. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 23 de octubre de 2022 [citado 28 de abril de 2024];51(2). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/96918

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

303

Descargas

Los datos de descargas todavía no están disponibles.