Published

2023-08-04

Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion

Actualización y modificación de una máquina para ensayos de micro abrasión-desgaste en entornos biológicos simulados con movimientos oscilatorios

DOI:

https://doi.org/10.15446/ing.investig.95685

Keywords:

wear, biomaterial, scanning electron microscopy, reciprocating motion (en)
Desgaste, Biomaterial, Microscopia electrónica de barrido (MEB), Movimiento reciprocante (es)

Downloads

Authors

  • Diego Felipe Prieto-Morales Universidad Militar Nueva Granda
  • José Luis Caballero-Gómez Universidad Militar Nueva Granda
  • Willian Arnulfo Aperador-Chaparro Universidad Militar Nueva Granda https://orcid.org/0000-0001-9006-0020
  • Juan Hilario Martínez-Pinilla Universidad Militar Nueva Granda

Aiming to evaluate the useful life of biomaterials used in joint prostheses, this study performed different wear tests in stainless steel 316L, a biomaterial used in hip joint replacements. The tests were carried out in a dry medium, with the help of an equipment that was improved regarding some of its characteristics and allows conducting wear tests via the contact of two bodies, one of them being the biomaterial under study and the other one a sphere of a harder material. For the evaluation, a device was developed to change the rotation of the sphere, varying the angle it traveled and the frequency with which it did it. Once the improvements were made to the aforementioned equipment, tests were conducted which involved obtaining wear tracks in order to observe the surface morphology through scanning electron microscopy (SEM) and to measure the length and the width of the tracks, with which the biomaterial wear coefficient was obtained for each case studied. In these tests, the wear coefficient showed variations with respect to the sphere’s angle of travel.

Con el objetivo de evaluar la vida útil de los biomateriales utilizados en prótesis articulares, este estudio llevó a cabo ensayos de desgaste en acero inoxidable 316L, un biomaterial usado en prótesis articulares de cadera. Los ensayos se realizaron en seco, con la ayuda de un equipo que se mejoró en algunas características y que permite realizar ensayos de desgaste mediante el contacto de dos cuerpos, siendo uno de estos el biomaterial a estudiar y el otro una esfera de un material más duro. Para la evaluación se desarrolló un dispositivo para cambiar el giro de la esfera, variando el ángulo que recorría y la frecuencia con la que lo hace. Una vez realizadas las mejoras al equipo mencionado, se realizaron ensayos donde se obtuvieron huellas de desgaste para observar la morfología superficial mediante microscopía electrónica de barrido (SEM) y medir el largo y el ancho de las huellas, con los cuales se obtuvo el coeficiente de desgaste del biomaterial para cada caso estudiado. En estas pruebas, el coeficiente de desgaste presentó variaciones con respecto al ángulo de recorrido de la esfera.

References

Ardila, M. A. N., Costa, H. L., and de Mello, J. D. B. (2020). Influence of the ball material on friction and wear in microabrasion tests. Wear, 450-451, 203266. https://doi.org/10.1016/j.wear.2020.203266 DOI: https://doi.org/10.1016/j.wear.2020.203266

BBC (n.d.). BBC Mundo—Noticias—Somos 7.000 millones, ¿cuáles son los desafíos? BBC News. https://www.bbc.com/mundo/noticias/2011/10/111026_poblacion_informe_am

BBC (2012). ¿Cuántos habitantes tendrá el planeta en 2050? ¿Y en 2300? BBC News. https://www.bbc.com/mundo/noticias/2012/10/121014_poblacion_futuro_habitantes_dp

Boone, D. C., and Azen, S. P. (1979). Normal range of motion of joints in male subjects. The Journal of Bone and Joint Surgery, American Volume, 61(5), 756-759. https://doi.org/10.2106/00004623-197961050-00017 DOI: https://doi.org/10.2106/00004623-197961050-00017

Caballero, J. L., Sierra Melo, N., and Aperador Chaparro, W. (2016). Design and construction of a machine for micro-abrasion-corrosion testing in simulated biological environments. Tecciencia, 11(20), 5-18. https://doi.org/10.18180/tecciencia.2016.20.2 DOI: https://doi.org/10.18180/tecciencia.2016.20.2

Caicedo, J. C., Aperador, W., and Aguilar, Y. (2013). Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel. Revista Mexicana de Física, 59(4), 364-373.

Cañizo, R. G. R., García, L. A. G., Torres, M. V., Cruz, E. A. M., and Pineda, J. M. S. (2010). Análisis experimental del desgaste entre UHMWPE y acero inoxidable 316l empleados en la manufactura de prótesis coxofemorales. Revista Colombiana de Biotecnología, 12(2), 2.

Cozza, R. C. (2013). A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surface and Coatings Technology, 215, 224-233. https://doi.org/10.1016/j.surfcoat.2012.06.088 DOI: https://doi.org/10.1016/j.surfcoat.2012.06.088

Cozza, R. C., Tanaka, D. K., and Souza, R. M. (2009). Friction coefficient and abrasive wear modes in ball-cratering tests conducted at constant normal force and constant pressure – Preliminary results. Wear, 267(1), 61-70. https://doi.org/10.1016/j.wear.2009.01.055 DOI: https://doi.org/10.1016/j.wear.2009.01.055

Dieter, G., and Schmidt, L. (2009). Engineering design. McGraw-Hill Education.

Diomidis, N., Mischler, S., More, N. S., and Roy, M. (2012). Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomaterialia, 8(2), 852-859. https://doi.org/10.1016/j.actbio.2011.09.034 DOI: https://doi.org/10.1016/j.actbio.2011.09.034

Gant, A. J., and Gee, M. G. (2011). A review of micro-scale abrasion testing. Journal of Physics D: Applied Physics, 44(7), 073001. https://doi.org/10.1088/0022-3727/44/7/073001 DOI: https://doi.org/10.1088/0022-3727/44/7/073001

Gee, M. G., Gant, A., Hutchings, I., Bethke, R., Schiffmann, K., Acker, K. V., Poulat, S., and Gachon, Y. (2002). Ball cratering or micro-abrasion wear testing of coatings. National Physical Laboratory. https://eprintspublications.npl.co.uk/2545/1/mgpg57.pdf

Gómez, M., and Sabeh, N. E. (n.d.). Calidad de vida: evolución del concepto y su influencia en la investigación y la práctica. http://campus.usal.es/~inico/investigacion/invesinico/calidad.htmLavernia, D. C. J., and Alcerro, D. J. C. (2008). Artroplastia total de rodilla. Actualidades de Posgrado para el Médico General, 13(7), 6-11.

Losada-Prieto, C., Om-tapanes, N., and Rodríguez, J. (2001). Tribología y lubricación en ensayo de banco. CIENCIA Ergo-Sum, 8(2), 184-190.

OrthoInfo (n.d.) Reemplazo total de rodilla. https://www.orthoinfo.org/es/treatment/reemplazo-total-de-rodilla-total-knee-replacement/

Pérez-Oviedo, P., and Torre-Nieto, J. (2015). Guía de diseño para calcular el desgaste abrasivo entre componentes no lubricados. Ciencia, Ingeniería y Desarrollo Tec Lerdo, 1(1), 20-29. http://revistacid.itslerdo.edu.mx/coninci2015/Revista%20CID%20Tec%202015.pdf

Rasor, J. S. (2009, March 29). The science of friction. Verdict Medical Devices. https://www.medicaldevice-network.com/features/feature52481/

Sampaio, M., Buciumeanu, M., Henriques, B., Silva, F. S., Souza, J. C. M., and Gomes, J. R. (2016). Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 60, 212-219. https://doi.org/10.1016/j.jmbbm.2015.12.038 DOI: https://doi.org/10.1016/j.jmbbm.2015.12.038

Stachowiak, G. B., Stachowiak, G. W., and Brandt, J. M. (2006). Ball-cratering abrasion tests with large abrasive particles. Tribology International, 39(1), 1-11. https://doi.org/10.1016/j.triboint.2004.10.010 DOI: https://doi.org/10.1016/j.triboint.2004.10.010

Staia, M. H., Enriquez, c. E., Puchi, E. S., Lewis, D. B., and Jeandin, M. (1998). Application of ball cratering method to study abrasive wear. Surface Engineering, 14(1), 49-54. https://doi.org/10.1179/sur.1998.14.1.49 DOI: https://doi.org/10.1179/sur.1998.14.1.49

Uehara, P. N., Iegami, C. M., Tamaki, R., Ballester, R. Y., de Souza, R. M., and Laganá, D. C. (2019). Analysis of behavior of the wear coefficient in different layers of acrylic resin teeth. The Journal of Prosthetic Dentistry, 121(6), P967.E1-967.E6. https://doi.org/10.1016/j.prosdent.2019.02.022 DOI: https://doi.org/10.1016/j.prosdent.2019.02.022

Vallet, R. M. (2004). Biomateriales para sustitución y reparación de tejidos. https://www.aecientificos.es/biomateriales-para-sustitucion-y-reparacion-de-tejidos/

How to Cite

APA

Prieto-Morales, D. F., Caballero-Gómez, J. L., Aperador-Chaparro, W. A. and Martínez-Pinilla, J. H. (2023). Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ingeniería e Investigación, 43(3), e95685. https://doi.org/10.15446/ing.investig.95685

ACM

[1]
Prieto-Morales, D.F., Caballero-Gómez, J.L., Aperador-Chaparro, W.A. and Martínez-Pinilla, J.H. 2023. Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ingeniería e Investigación. 43, 3 (Aug. 2023), e95685. DOI:https://doi.org/10.15446/ing.investig.95685.

ACS

(1)
Prieto-Morales, D. F.; Caballero-Gómez, J. L.; Aperador-Chaparro, W. A.; Martínez-Pinilla, J. H. Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ing. Inv. 2023, 43, e95685.

ABNT

PRIETO-MORALES, D. F.; CABALLERO-GÓMEZ, J. L.; APERADOR-CHAPARRO, W. A.; MARTÍNEZ-PINILLA, J. H. Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ingeniería e Investigación, [S. l.], v. 43, n. 3, p. e95685, 2023. DOI: 10.15446/ing.investig.95685. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/95685. Acesso em: 17 may. 2024.

Chicago

Prieto-Morales, Diego Felipe, José Luis Caballero-Gómez, Willian Arnulfo Aperador-Chaparro, and Juan Hilario Martínez-Pinilla. 2023. “Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion”. Ingeniería E Investigación 43 (3):e95685. https://doi.org/10.15446/ing.investig.95685.

Harvard

Prieto-Morales, D. F., Caballero-Gómez, J. L., Aperador-Chaparro, W. A. and Martínez-Pinilla, J. H. (2023) “Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion”, Ingeniería e Investigación, 43(3), p. e95685. doi: 10.15446/ing.investig.95685.

IEEE

[1]
D. F. Prieto-Morales, J. L. Caballero-Gómez, W. A. Aperador-Chaparro, and J. H. Martínez-Pinilla, “Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion”, Ing. Inv., vol. 43, no. 3, p. e95685, Aug. 2023.

MLA

Prieto-Morales, D. F., J. L. Caballero-Gómez, W. A. Aperador-Chaparro, and J. H. Martínez-Pinilla. “Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion”. Ingeniería e Investigación, vol. 43, no. 3, Aug. 2023, p. e95685, doi:10.15446/ing.investig.95685.

Turabian

Prieto-Morales, Diego Felipe, José Luis Caballero-Gómez, Willian Arnulfo Aperador-Chaparro, and Juan Hilario Martínez-Pinilla. “Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion”. Ingeniería e Investigación 43, no. 3 (August 4, 2023): e95685. Accessed May 17, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/95685.

Vancouver

1.
Prieto-Morales DF, Caballero-Gómez JL, Aperador-Chaparro WA, Martínez-Pinilla JH. Upgrade and Modification of a Machine for Micro-Abrasion Wear Testing in Simulated Biological Environments with Oscillatory Motion. Ing. Inv. [Internet]. 2023 Aug. 4 [cited 2024 May 17];43(3):e95685. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/95685

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

192

Downloads

Download data is not yet available.