Publicado

2022-07-14

Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals

Índice de Permeabilidad Vial como herramienta para la planificación de mitigación de los impactos de las carreteras sobre la fauna silvestre en Colombia: un caso de estudio utilizando mamíferos

DOI:

https://doi.org/10.15446/caldasia.v45n1.94046

Palabras clave:

Barrier effect, expert knowledge, environmental impact assessments, fauna movement, mitigation measures (en)
efecto barrera, Conocimiento de experto, evaluaciones de impacto ambiental, medidas de mitigación, movimiento de fauna (es)

Descargas

Autores/as

Mitigation planning for road projects in Colombia has been largely based on actions aimed at reducing wildlife roadkills. Nonetheless, the efficiency of these actions is compromised because of the absence of robust empirical studies supporting their implementation. In this work, I used the Road Permeability Index (RPI) in conjunction with expert knowledge information to estimate the strength of the barrier effect imposed by an under-construction road (Yuma road, Santander department, Colombia) on nine functional groups of medium and large-sized mammals. The influence of 12 landscape variables on the permeability of each functional group was assessed at 30 locations along the road. The RPI was calculated for each functional group, and the whole studied mammal assemblage at each location. The relative influence of each variable on overall permeability was also estimated. I found that functional groups including terrestrial and semiarboreal species present higher contribution values to overall road permeability, indicating that they represent priority targets for mitigation actions. The RPI identified six highly permeable locations for animal movement—where higher roadkill rates are expected—which are key for implementing mitigation strategies aimed at reducing wildlife road mortality. Forest cover had the strongest influence on road permeability, therefore is crucial for landscape conectivity. Overall, the results of this work show that RPI constitutes a reliable and easily adaptable alternative for identifying priority species, or faunal groups, and locations for road mitigation planning.

La planificación de mitigación de proyectos viales en Colombia se ha basado principalmente en acciones para reducir la mortalidad de animales silvestres en carreteras. Sin embargo, la ausencia de estudios empíricos que respalden estas acciones comprometen su eficiencia. En este trabajo se utilizó el Índice de Permeabilidad Vial (RPI por su nombre inglés) junto con información de conocimiento experto para estimar la intensidad del efecto barrera impuesto por una carretera en construcción (vía Yuma, departamento de Santander, Colombia) sobre nueve grupos funcionales de mamíferos medianos y grandes. La influencia de doce variables del paisaje sobre la permeabilidad de cada grupo fue evaluada en 30 sitios a lo largo de la vía. El RPI se calculó para cada grupo funcional y para el ensamblaje de mamíferos en cada sitio. Se estimó la influencia relativa de cada variable sobre la permeabilidad total. Los grupos funcionales que incluyen especies terrestres y semiarborícolas presentaron valores altos de contribución a la permeabilidad vial total, indicando que son objetos prioritarios para acciones de mitigación. El RPI identificó seis sitios de alta permeabilidad—donde se esperan más atropellamientos—los cuales son claves para la implementación de estrategias de mitigación enfocadas en reducir la mortalidad vial de fauna silvestre. La cobertura boscosa tuvo la mayor influencia absoluta en la permeabilidad vial, siendo crucial para la conectividad del paisaje. En general los resultados muestran que el RPI es una alternativa confiable y fácilmente adaptable para identificar especies, o grupos faunísticos, y sitios prioritarios para la planificación de mitigación vial.

Referencias

[ANI] Agencia Nacional de Infraestructura Colombia. c2020. Ficha proyecto 4G: Bucaramanga–Barrancabermeja–Yuma. [Revisada en: 10 feb 2020]. https://www.ani.gov.co

[ANLA] Agencia Nacional de Licencias Ambientales Colombia Infraestructura. c2019. Gaceta: Resolución 0829 del 8 Agosto 2016. [Revisada en: 21 may 2019]. http://portal.anla.gov.co

Ascensão F, Kindel A, Teixeira FZ, Barrientos R, D’Amico M, Borda-de-Água L, Pereira HM. 2019. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19:e00661. doi: https://doi.org/10.1016/j.gecco.2019.e00661 DOI: https://doi.org/10.1016/j.gecco.2019.e00661

Assis JC, Giacomini HC, Ribeiro MC. 2019. Road Permeability Index: Evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Indic. 99:365–374. doi: https://doi.org/10.1016/j.ecolind.2018.12.012 DOI: https://doi.org/10.1016/j.ecolind.2018.12.012

Beyer HL, Gurarie E, Börger L, Panzacchi M, Basille M, Herfindal I, Van Moorter BR, Lele S, Matthiopoulos J. 2016. ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals. J. Anim. Ecol. 85(1):43–53. doi: https://doi.org/10.1111/1365-2656.12275 DOI: https://doi.org/10.1111/1365-2656.12275

Brady MJ, McAlpine CA, Possingham HP, Miller CJ, Baxter GS. 2011. Matrix is important for mammals in landscapes with small amounts of native forest habitat. Landsc. Ecol. 26:617–628. doi: https://doi.org/10.1007/s10980-011-9602-6 DOI: https://doi.org/10.1007/s10980-011-9602-6

Calinski T, Harabasz J. 1974. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1):1–27. doi: https://doi.org/10.1080/03610927408827101 DOI: https://doi.org/10.1080/03610927408827101

de la Ossa-V J, Galván-Guevara S. 2015. Registro de mortalidad de fauna silvestre por colisión vehicular en la carretera Toluviejo–ciénaga La Caimanera, Sucre, Colombia. Biota Colomb. 16(1):67–77.

Doherty TS, Driscoll DA. 2017. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B 285:20172272. doi: https://doi.org/10.1098/rspb.2017.2272 DOI: https://doi.org/10.1098/rspb.2017.2272

Drescher M, Edwards RC. 2019. A systematic review of transparency in the methods of expert knowledge use. J. Appl. Ecol. 56(2):436–449. doi: https://doi.org/10.1111/1365-2664.13275 DOI: https://doi.org/10.1111/1365-2664.13275

Etter A, McAlpine C, Pullar D, Possingham H. 2006. Modelling the conversion of Colombian lowland ecosystems since 1940: drivers, patterns and rates. J. Environ. Manage. 79(1):74–87. doi: https://doi.org/10.1016/j.jenvman.2005.05.017 DOI: https://doi.org/10.1016/j.jenvman.2005.05.017

Garcia-Ulloa J, Sloan S, Pacheco P, Ghazoul J, Koh LP. 2012. Lowering environmental costs of oil-palm expansion in Colombia. Conserv. Lett. 5(5):366–375. doi: https://doi.org/10.1111/j.1755-263X.2012.00254.x DOI: https://doi.org/10.1111/j.1755-263X.2012.00254.x

Gardiner MM, Riley CB, Bommarco R, Öckinger E. 2018. Rights-of-way: a potential conservation resource. Front. Ecol. Environ. 16(3):149–158. doi: https://doi.org/10.1002/fee.1778 DOI: https://doi.org/10.1002/fee.1778

Garzón NV, Gutiérrez JC. 2013. Deterioro de humedales en el Magdalena Medio: un llamado para su conservación. Bogotá DC: Fundación Alma e Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3-4):325–338. doi: https://doi.org/10.1093/biomet/53.3-4.325 DOI: https://doi.org/10.1093/biomet/53.3-4.325

Grilo C, Molina-Vacas G, Fernández-Aguilar X, Rodriguez-Ruiz J, Ramiro V, Porto-Peter F, Ascensão F, Román J, Revilla E. 2018. Species-specific movement traits and specialization determine the spatial responses of small mammals towards roads. Landsc. Urban Plan. 169:199–207. doi: https://doi.org/10.1016/j.landurbplan.2017.09.014 DOI: https://doi.org/10.1016/j.landurbplan.2017.09.014

Grilo C, Sousa J, Ascensão F, Matos H, Leitão I, Pinheiro P, Costa M, Bernardo J, Reto D, Lourenço R, Santos-Reis M, Revilla E. 2012. Individual spatial responses towards roads: implications for mortality risk. PLoS One 7(9):e43811. doi: https://doi.org/10.1371/journal.pone.0043811 DOI: https://doi.org/10.1371/journal.pone.0043811

Holdridge L. 1987. Ecología basada en zonas de vida. San José: Instituto Interamericano de Cooperación para la Agricultura.

[IDEAM] Instituto de Hidrología, Meteorología y Estudios Ambientales. c2019. Promedios climatológicos. [Revisada en: 15 may 2019]. http://www.ideam.gov.co

Jaeger JAG, Bowman J, Brennan J. 2005. Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecol. Model. 185(2-4):329–348. doi: https://doi.org/10.1016/j.ecolmodel.2004.12.015 DOI: https://doi.org/10.1016/j.ecolmodel.2004.12.015

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. 2008. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA. 105:19052–19059. doi: https://doi.org/10.1073/pnas.0800375105 DOI: https://doi.org/10.1073/pnas.0800375105

Meza-Joya FL, Ramos-Pallares E, Cardona D, Torres M. 2015. Atropellamiento vehicular de mamíferos silvestre en el Magdalena Medio Santandereano. Mammal. Notes 2:190

Meza-Joya FL, Ramos E, Cediel F, Martínez-Arias V, Colmenares J, Cardona D. 2018. Predicted distributions of two poorly known small carnivores in Colombia: the greater grison and striped hog-nosed skunk. Mastozool. Neotrop. 25(1):89–105. doi: https://doi.org/10.31687/saremMN.18.25.1.0.09 DOI: https://doi.org/10.31687/saremMN.18.25.1.0.09

Meza-Joya FL, Ramos E, Cardona D. 2019. Spatio-temporal patterns of mammal road mortality in Middle Magdalena Valley, Colombia. Oecologia Aust. 23(3):575–588. doi: https://doi.org/10.4257/oeco.2019.2303.15 DOI: https://doi.org/10.4257/oeco.2019.2303.15

Meza-Joya FL, Ramos E, Cardona D. 2020. Forest fragmentation erodes mammalian species richness and functional diversity in a human-dominated landscape in Colombia. Mastozool. Neotrop. 27(2):338–348. https://doi.org/10.31687/saremMN.20.27.2.0.06 DOI: https://doi.org/10.31687/saremMN.20.27.2.0.06

Monroy MC, de La Ossa-Lacayo A, de La Ossa-V J. 2015. Tasa de atropellamiento de fauna silvestre en la vía San Onofre-María la Baja, Caribe Colombiano. Rev. Asoc. Col. Cienc. 27(1): 88–95. doi: https://doi.org/10.47499/revistaaccb.v1i27.106 DOI: https://doi.org/10.47499/revistaaccb.v1i27.106.

Newsome TM, Dellinger JA, Pavey CR, Ripple WJ, Shores CR, Wirsing AJ, Dickman CR. 2015. The ecological effects of providing resource subsidies to predators. Global Ecol. Biogeogr. 24(1):1–11. doi: https://doi.org/10.1111/geb.12236 DOI: https://doi.org/10.1111/geb.12236

Payan E, Soto C, Díaz-Pulido A, Benítez A, Hernández A. 2013. Wildlife road crossing and mortality: lessons for wildlife friendly road design in Colombia. Proceeding ICOET 2013:2–18.

Plante J, Jaeger JAG, Desrochers A. 2019. How do landscape context and fences influence roadkill locations of small and medium-sized mammals? J. Environ. Manage. 235:511–520. doi: https://doi.org/10.1016/j.jenvman.2018.10.093 DOI: https://doi.org/10.1016/j.jenvman.2018.10.093

R Core Team. 2020. R: A language and environment for statistical computing. Version 4.0.3. Vienna, Austria: R Foundation for Statistical Computing.

Ramos E, Meza-Joya FL. 2018. Reptile road mortality in a fragmented landscape of the Middle Magdalena Valley, Colombia. Herpetol. Notes 11:81–9.

Ramp D, Caldwell J, Edwards KA, Warton D, Croft DB. 2005. Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biol. Conserv. 126(4):474–490. doi: https://doi.org/10.1016/j.biocon.2005.07.001 DOI: https://doi.org/10.1016/j.biocon.2005.07.001

Reding DM, Cushman SA, Gosselink TE, Clark WR. 2013. Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landsc. Ecol. 28:471–486. doi: https://doi.org/10.1007/s10980-012-9844-y DOI: https://doi.org/10.1007/s10980-012-9844-y

Riffat R, Khan D. 2006. A review and evaluation of the environmental impact assessment process in Pakistan. J. Appl. Sci. Environ. Sanit. 1:17–29.

Rincón-Aranguri M, Urbina-Cardona N, Galeano SP, Bock BD, Páez VP. 2019. Road kill of snakes on a highway in an Orinoco ecosystem: Landscape factors and species traits related to their mortality. Trop. Conserv. Sci. 12:1–18. https://doi.org/10.1177/1940082919830832 DOI: https://doi.org/10.1177/1940082919830832

Silva I, Crane M, Savini T. 2020. High roadkill rates in the Dong Phayayen-Khao Yai World Heritage Site: conservation implications of a rising threat to wildlife. Anim. Conserv. 23(4):466-478. doi: https://doi.org/10.1111/acv.12560 DOI: https://doi.org/10.1111/acv.12560

Schwartz ALW, Shilling FM, Perkins SE. 2020. The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 66:18. doi: https://doi.org/10.1007/s10344-019-1357-4 DOI: https://doi.org/10.1007/s10344-019-1357-4

Teixeira FZ, Coelho IP, Lauxen M, Esperandio IB, Hartz SM, Kindel A. 2016. The need to improve and integrate science and environmental licensing to mitigate wildlife mortality on roads in Brazil. Trop. Conserv. Sci. 9(1):34–42. doi: https://doi.org/10.1177/194008291600900104 DOI: https://doi.org/10.1177/194008291600900104

Toro J, Requena I, Zamorano M. 2010. Environmental impact assessment in Colombia: Critical analysis and proposals for improvement. Environ. Impact. Assess. Rev. 30(4):247–261. doi: https://doi.org/10.1016/j.eiar.2009.09.001 DOI: https://doi.org/10.1016/j.eiar.2009.09.001

Vanak AT, Gompper ME. 2010. Interference competition at the landscape level: the effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47(6):1235–1232. doi: https://doi.org/10.1111/j.1365-2664.2010.01870.x DOI: https://doi.org/10.1111/j.1365-2664.2010.01870.x

Viloria-Villegas MI, Cadavid L, Awad G. 2018. Metodología para evaluación de impacto ambiental de proyectos de infraestructura en Colombia. Cienc. Ing. Neogranad. 28(2):121–156. doi: https://doi.org/10.18359/rcin.2941 DOI: https://doi.org/10.18359/rcin.2941

van der Ree R, van der Grift EA, Gulle N, Holland K, Mata C, Suarez F. 2007. Overcoming the barrier effect of roads: how effective are mitigation strategies? An international review of the use and effectiveness of underpasses and overpasses designed to increase the permeability of roads for wildlife. Proceeding ICOET 2017:423–431

Cómo citar

APA

Meza, F. L. (2022). Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals. Caldasia, 45(1), 66–75. https://doi.org/10.15446/caldasia.v45n1.94046

ACM

[1]
Meza, F.L. 2022. Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals. Caldasia. 45, 1 (jun. 2022), 66–75. DOI:https://doi.org/10.15446/caldasia.v45n1.94046.

ACS

(1)
Meza, F. L. Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals. Caldasia 2022, 45, 66-75.

ABNT

MEZA, F. L. Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals. Caldasia, [S. l.], v. 45, n. 1, p. 66–75, 2022. DOI: 10.15446/caldasia.v45n1.94046. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/94046. Acesso em: 27 abr. 2024.

Chicago

Meza, Fabio Leonardo. 2022. «Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals». Caldasia 45 (1):66-75. https://doi.org/10.15446/caldasia.v45n1.94046.

Harvard

Meza, F. L. (2022) «Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals», Caldasia, 45(1), pp. 66–75. doi: 10.15446/caldasia.v45n1.94046.

IEEE

[1]
F. L. Meza, «Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals», Caldasia, vol. 45, n.º 1, pp. 66–75, jun. 2022.

MLA

Meza, F. L. «Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals». Caldasia, vol. 45, n.º 1, junio de 2022, pp. 66-75, doi:10.15446/caldasia.v45n1.94046.

Turabian

Meza, Fabio Leonardo. «Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals». Caldasia 45, no. 1 (junio 21, 2022): 66–75. Accedido abril 27, 2024. https://revistas.unal.edu.co/index.php/cal/article/view/94046.

Vancouver

1.
Meza FL. Road Permeability Index as a tool for mitigation planning of road impacts on wildlife in Colombia: a case study using mammals. Caldasia [Internet]. 21 de junio de 2022 [citado 27 de abril de 2024];45(1):66-75. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/94046

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

369

Descargas

Los datos de descargas todavía no están disponibles.