FERROCENE-CONTAINING ACTIVE PLASTICIZER BASED ON CASTOR OIL GLYCEROLYSIS PRODUCTS

Authors

  • Olena Yu. Nesterova Oles Honchar Dnipro National University, Ukraine https://orcid.org/0000-0003-0732-4000
  • Taisiya V. Ognevaya Oles Honchar Dnipro National University, Ukraine
  • Kyrylo I. Tymoshenko Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i4.243493

Keywords:

ferrocenecarboxylic acid, castor oil, active plasticizer

Abstract

Present study deals with the synthesis of ferrocene-containing active plasticizer via castor oil glycerolysis products acylation by ferrocenecarboxylic acid chloride. It is shown that recrystallization of acid itself from organic solvents is needed in order to obtain good yields of corresponding chloride. This is confirmed via DSC and TGA – results of analysis show that ferrocenecarboxylic acid separates from aqueous environment as a hydrate FcCOOH3H2O. Also, the study presents physicochemical characteristics of active plasticizer. DSC shows that addition of 7% of the plasticizer to the SKN-10-KTR rubber causes lowering of glass-transition temperature.

References

Maggi, F., Dossi, S., Paravan, C. (2019). Iron oxide as solide propellant catalyst: A detailed characterization. Acta Astronaut.,158, 416–424. https://doi.org/10.1016/j.actaastro.2018.07.037.

M Usman, Li Wang, HaojieYu, Wang Li, Fazal Haq, M. Haroon, Raja Summe, Ullah, Amin, Khan, Shah Fahad, Ahsan Nazir, Tarig Elshaarani (2018). Recent progress on ferrocene-based burning rate catalysts for propellant applications. Organomet. Chem., 872, 40–53. https://doi.org/10.1016/j.jorganchem.2018.07.015.

Feng Haitao, Liu Xiaoju,Zhang Chi,Wang Yanli,Ma Xiaoyan (2021) Research progress of new ferrocene-based burning rate catalysts for composite solid propellants. Chemical Industry and Engineering Progress, 40, 2560–2573.

https://doi.org/10.16085/j.issn.1000-6613.2020-0884.

Zain-ul-Abdin, Li Wang, Haojie Yu, Muhammad Saleem, Muhammad Akram, Hamad Khalid, Nasir M. Abbasi, Rizwan Ullah Khan (2017). Synthesis and catalytic performance of ferrocene-based compounds as burning rate catalysts. Appl. Organomet. Chem. 31(11), e3754. https://doi.org/10.1002/aoc.3754.

Nesterova, E. Yu., Smolnikova, T. Yu., Tymoshenko, K. I. (2019). Ukraine Patent No. 122735. Kyiv, Ukraine. Ukrainian Institute of Industrial Property.

Kosicina, O. S., Nesterova, O. Yu. (2019). Modern directions of scientific engineering of the burning rate modifiers for composite solid propellants. Journal of Chemistry and Technologies, 27(2), 179–200. https://doi.org/10.15421/081919.

Payne, G. F. (1959). Technology of organic coatings. (Vol. 1. Oils, resins, varnishes, polymers)]. In E.F. Belenky (Ed.). L.: Chemical literature.

Duerksen, R.L., & Cohen J. (1974). US Patent No. 3793099A. USA. Aerojet Rocketdyne Inc.

Zhang, C. Q., Garrison, T.F., Madbouly, S.A., & Kessler, M.R. (2017). [Recent advances in vegetable oil-based polymers and their composites]. Prog Polym Sci. 71, 91-143. https://doi.org/10.1016/j.progpolymsci.2016.12.009.

Yusuf, A. K., Mamza P. (2018) Effects of Internal Plasticization on the Physical and Mechanical Properties of Castor Oil - Based Polyurethane Foams. International Journal of Scientific and Research Publications. 8(10), 83-92.

http://dx.doi.org/10.29322/IJSRP.8.10.2018.p8213.

Chena Jia-Hui, Dan-Dan Hu, Yi-Dong Li, Fanlong Meng, Jiang Zhu, Jian-Bing Zenga. (2018). Castor oil derived poly(urethane urea) networks with repressibility and enhanced mechanical properties. Polymer,143, 79–86. http://doi.org/10.1016/j.polymer.2018.04.013.

Arévalo-Alquichire, S. Valero, M. (2017). Castor Oil Polyurethanes as Biomaterials. Chapter 7 in Elastomers. Intech Open., 137–157. https://doi.org/10.5772/intechopen.68597.

Tan, A. C. W., Polo-Cambronell, B. J., Provaggi, E., Ardila-Suarez, C., Ramirez-Caballero, G. E., Baldovino-Medrano, V. G., Kalaskar, D. M. (2017). Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications. Biopolymer,109 (2), e23078. https://doi.org/10.1002/bip.23078.

Edza, Nekhavhambe, Hembe, E. Mukaya, Diakanua, B. Nkazi. (2019). Development of castor oil–based polymers: A review. Journal of Advanced Manufacturing and Processing, 1 (4), e10030. https://doi.org/10.1002/amp2.10030.

Boga, K., Kumar Gaddam, S., Rao Chepuri, R., Palanisamy, A. (2019). Development of biobased polyurethane-imides from maleinized cottonseed oil and castor oil. Polymers for Advanced Tehnologies, 30 (11), 2742–2749. https://doi.org/10.1002/pat.4705.

Parada Hernandez, N. L., Bonon, A. J., Bahú, J. O., Barbosa, M. I. R., Wolf Maciel, M. R., & Filho, R. M. (2017). Epoxy monomers obtained from castor oil using a toxicity-free catalytic system. J. Mol. Catal. A: Chem., 426, 550–556. http://doi.org/10.1016/j.molcata.2016.08.005.

Sushanta, K. Sahoo, Vinay Khandelwal, Gaurav Manik. (2018). Development of completely bio-based epoxy networks derived from epoxidized linseed and castor oil cured with citric acid. Polymers for Advanced Tehnologies, 29(7), 2080–2090. https://doi.org/10.1002/pat.4316.

Sudheer Kumar, Sukhila Krishnan (2021). Chapter 3 - Polymer Blends Based on Bioepoxy Polymers/Sudheer Kumar, Sukhila Krishnan.in Book «Bio‐Based Epoxy Polymers, Blends and Composites: Synthesis, Properties, Characterization and Applications». WILEY ‐ VCH GmbH. 117–141.

https://doi.org/10.1002/9783527823604.ch3

Euro-Asian Council for Standardization, Metrology and Certification. (1995). [Medical castor oil]. (GOST-18102-95). Minsk, Russian Federation: Izdatelstvo standartov (in Russian).

Hartman, L., Lago, R., C. A., Azeredo Laerte C., Azeredo Maria, A. A. (1987). Determination of Hydroxyl Value in Fats and Oils Using an Acid Catalyst. The Analyst. 112(2),145–147. http://doi.org/10.1039/an9871200145.

Biswal, S., Satapathy, J. R., Achary, P. G. R., Pal, N. C. (2012). The Synthesis and FTIR, Kinetics and TG/DTG/DTA Study of Inter Penetrating Polymer Networks (IPNs) Derived from Polyurethanes of Glycerol Modified Castor Oil and Cardanol Based Dyes. J Polym Environ. 20(3), 788–793. http://doi.org/10.1007/s10924-012-0474-x.

Arimoto, F.S., Haven, A.C. (1955) Derivatives of Dicyclopentadienyl iron. J. Am. Chem. Soc, 77(23), 6295–6297. https://doi.org/10.1021/ja01628a068.

Choudhury, R. Basu Roy (1960). The preparation and purification of monoglycerides I. Glycerolysis of oils. Journal of The American Oil Chemists' Societу., 37(10), 483–486. https://doi.org/10.1007/BF02630510.

Siggia, S., Hannah, J.G. (1983). [Quantitative organic analysis by functional groups]. Moskow: Chemistry. 42–44.

Ito, T., Sugahara, N. Kindaichi, Y., &Takami Y. (1976). Nippon Kagaku Kaishi. J. Chem. Soc. Jpn. 353 (in Japanese).

Mandelbaus, A., Cais, M. (1964). Fragmentation of Some Substituted Ferrocenes under Electron Impact. Tetrahedron Letters. 51. 3847–3852. https://doi.org/10.1016/S0040-4039(01)93304-0.

Data from NIST Standard Reference Database 69: NIST Chemistry WebBook. (2021). U.S. Secretary of Commerce on behalf of the United States of America. https://webbook.nist.gov/cgi/cbook.cgi?ID=C1271427&Units=SI&Mask=200#Mass-Spec.

Sigeru, Oae. (1975). [Chemistry of organic sulfur compounds]. In E.N. Prilezhaeva (Ed.). Moskow: Chemistry.

Ruoli Sun, Li Wang, Haojie Yu, Zain-ul-Abdin, Yongsheng Chen, Hamad Khalid, Nasir Abbasi, Muhammad Akram (2014). Synthesis of Ferrocene-Based Hyperbranched Polyether and Its Catalytic Performance for Thermal Decomposition of Ammonium Perchlorate. J Inorg Organomet Polym. 24.1063-1069. http://doi.org/10.1007/s10904-014-0084-2.

Mukherjea, R.N., Saha, K.K., Sanyal, S.K. (1978). Plasticizing Effect of Acetylated Castor Oil on Castor Oil-Based, Moisture-Cured Polyurethane Film. Journal of The American Oil Chemists' Societу. 55(9), 653–656. https://doi.org/10.1007/BF02682453/

Gurunathan, T., Mohanty, S., Nayak, S. K. (2015) Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Prog. Org. Coat.: 80, 39–48. https://doi.org/10.1016/j.porgcoat.2014.11.017.

Tsiganok, L. P., Vishnikin, A. B., Bubel, T.O. Vashkevich, O.Y. (2014). [Analytical chemistry. Chemical methods of analysis]. Dnipropetrovsk, Ukraine: Oles Honchar DNU (in Ukrainian).

Lysien K., Stolarczyk A., Jarosz T. (2021). Solid Propellant Formulations: A Review of Recent Progress and Utilized Components. Materials, 14(21), 6657. https://doi.org/10.3390/ma14216657.

Barshteyn R. S., Kirilovich V. I., Nosovskiy Yu. E. (1982). [Plasticizers for polymers]. Moscow, USSR: Chemistry (in Russian).

Published

2022-01-28