Ferrimagnetic Characteristics and Spin Compensation Temperatures of a Mixed Spin-3 and Spin-5/2 Blume–Capel Model

Authors

  • I.A. Obaid Department of Physics, College of Science, University of Thi-Qar
  • H.K. Mohamad College of Science, Al Muthanna University
  • Sh.D. Al-Saeedi Department of Physics, College of Science, University of Thi-Qar

DOI:

https://doi.org/10.15407/ujpe67.9.695

Keywords:

mixed spin Blume–Capel model, magnetic crystal field, phase transitions, reentrant behavior, spin compensation temperature

Abstract

We study the molecular mean-field theory (MMFT) based on the Gibbs–Bogolyubov free energy function of a ferrimagnetic with mixed spin-3 and spin-5/2 for various magnetic crystal fields in the Blume–Capel model. We have evaluated the free energy depending on the trial Hamiltonian operator. By minimizing the free energy of the present system, we have obtained the characteristic features of the longitudinal magnetizations, compensation temperatures, and re-entrant behaviors in the ranges of low temperatures. In particular, we study the effect of magnetic anisotropies on the critical phenomena for the proposed model. The sublattice magnetization dependence of the free energy function has been discussed as well. Our results predict the existence of multiple spin compensation points in the disordered Blume–Capel system for a square lattice.

References

S.K. Ghatak. Magnetic behaviour of a disordered Ising ferrimagnet in a high magnetic field. Philosophical Magazine 92 (1-3), 120 (2011).

https://doi.org/10.1080/14786435.2011.607864

S. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimoto. Design and preparation of a novel magnet exhibiting two compensation temperatures based on molecular field theory. Phys. Rev. Lett. 82, 1285 (1999).

https://doi.org/10.1103/PhysRevLett.82.1285

O.F. Abubrig, D. Horvath, A. Bobak, M. Jascur. Meanfield solution of the mixed spin-1 and spin-3/2 Ising system with different single-ion anisotropies. Phys. A 296, 437 (2001).

https://doi.org/10.1016/S0378-4371(01)00176-5

A. Jabar, R. Masrour, A. Benyoussef, M. Hamedoun. Magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice: A Monte Carlo study. Chem. Phys. Lett. 670, 16 (2017).

https://doi.org/10.1016/j.cplett.2016.12.070

J. Kpl'e, S. Massou, F. Hontinfinde, E. Albayrak. Spin-1/2 Ising model on a AFM/FM two-layer Bethe lattice in a staggered magnetic field. Chinese J. Phys. 56 1252 (2018).

https://doi.org/10.1016/j.cjph.2018.04.008

W. Linert, M. Verdaguer. Molecular Magnets, Recent Highlights (Springer, 2003).

https://doi.org/10.1007/978-3-7091-6018-3

D. Gatteschi. Molecular Magnetism: A basis for new materials. Adv. Mater. 6, 635 (1994).

https://doi.org/10.1002/adma.19940060903

J.S. Miller, A.J. Epstein. Designer Magnets. Chem. Eng. News 73 (40), 30 (1995).

https://doi.org/10.1021/cen-v073n040.p030

T. Kaneyoshi, E.F. Sarmento, I.P. Fittipaldi. A Compensation temperature induced by transverse fields in a mixed ising ferrimagnetic system. Jpn. J. Appl. Phys. 27 (4), L690 (1988).

https://doi.org/10.1143/JJAP.27.L690

J.H.V.J. Brabers, V.H.M. Duijn, F.R. de Boer. Magnetic properties of rare-earth manganese compounds of the RMn6Ge6 type. J. Alloys and Compounds 198, 127 (1993).

https://doi.org/10.1016/0925-8388(93)90155-G

G. Venturini, B. Chafik, El. Idrissi, E. Ressouche, B. Malaman. Magnetic structure of YbMn6Ge6 from neutron diffraction study. J. Alloys and Compounds 216, 243 (1995).

https://doi.org/10.1016/0925-8388(94)01278-P

C.A. Mercado, N. De La Espriella, L.C. S'anchez. Ground state phase diagrams for the mixed Ising 2 and 5/2 spin model. J. Magn. Magn. Mater. 382, 288 (2015).

https://doi.org/10.1016/j.jmmm.2015.01.068

M. Karimou, R.A. Yessoufou, G.D. Ngantso, F. Hontinfinde, A. Benyoussef. Mean-field and Monte Carlo studies of the magnetic properties of a spin-7/2 and spin-5/2 Ising bilayer film. J. Supercond. Nov. Magn. 32, 1769 (2018).

https://doi.org/10.1007/s10948-018-4876-4

M. JaˇsпїЅur, T. Kaneyoshi. The effect of anisotropies on

the transition temperature in a spin-1/2 and spin-3/2

bilayer system with disordered interfaces. Phys. A Stat.

Mech. its Appl. 220 (3-4), 542 (1995).

https://doi.org/10.1016/0378-4371(95)00216-T

T. Kaneyoshi, M. Jascur. Magnetic properties of a ferromagnetic or ferrimagnetic bilayer system. Physica A 195,

https://doi.org/10.1016/0378-4371(93)90171-Y

(1993).

A. Bob'ak. The effect of anisotropies on the magnetic properties of a mixed spin-1 and spin-3/2 Ising ferrimagnetic

system. Phys. A 258, 140 (1998).

https://doi.org/10.1016/S0022-3115(98)00357-2

T. Kaneyoshi, Y. Nakamura, S. Shin. A diluted mixed spin-2 and spin-5/2 ferrimagnetic Ising system; A study of a molecular-based magnet. J. Phys.: Condens. Matter 10, 7025 (1998).

https://doi.org/10.1088/0953-8984/10/31/018

Y. Nakamura. Existence of a compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system on a layered honeycomb lattice. Phys. Rev. B 62 (17), 11742 (2000).

https://doi.org/10.1103/PhysRevB.62.11742

A. Ozkan. A simulation of the mixed spin 3-spin 3/2 ferrimagnetic Ising model. Phase Transitions; A multinational J. 89 (1), 94 (2015).

https://doi.org/10.1080/01411594.2015.1067702

M. Godoy, V.S. Leite, W. Figueiredo. Mixed-spin Ising model and compensation temperature. Phys. Rev. B 69, 054428 (2004).

https://doi.org/10.1103/PhysRevB.69.054428

R. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef. Magnetic properties of mixed integer and half integer spins in a Blume-Capel model: A Monte Carlo study. J. Magn. Magn. Mater. 421, 76 (2017).

https://doi.org/10.1016/j.jmmm.2016.07.069

R. Masrour, A. Jabar. Magnetic properties of multilayered with alternating magnetic wires with the mixed spins-2 and 5/2 ferrimagnetic Ising model. Superlattices and Microstructures 109, 641 (2017).

https://doi.org/10.1016/j.spmi.2017.05.051

B. Deviren, M. Keskin, O. Canko. Magnetic properties of an anti-ferromagnetic and ferrimagnetic mixedspin-1/2 and spin-5/2 Ising model in the longitudinal magnetic field within the effective-field approximation. Physica A 388, 1835 (2009).

https://doi.org/10.1016/j.physa.2009.01.032

A. Dakhama, N. Benayad. On the existence of compensation temperature in 2d mixed-spin Ising ferrimagnets: an exactly solvable model. J. Magn. Magn. Mater. 213, 117 (2000).

https://doi.org/10.1016/S0304-8853(99)00606-X

H. Miao, G. Wei, J. Geng. Phase transitions and multicritical points in the mixed spin-3/2 and spin-2 Ising model with different single-ion anisotropies. J. Magn. Magn. Mater. 321, 4139 (2009).

https://doi.org/10.1016/j.jmmm.2009.08.018

G.M. Buendia, J.A. Liendo. Monte Carlo simulation of a mixed spin 2 and spin Ising ferrimagnetic system. J. Phys.: Condens. Matter 9, 5439 (1997).

https://doi.org/10.1088/0953-8984/9/25/011

E. Albayrak, A. Yigit. Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice. Phys. Lett. A 353, 121 (2006).

https://doi.org/10.1016/j.physleta.2005.12.077

J.Oitmaa, I.G.Enting. A series study of a mixed-spin S = (︀1 2 , 1)︀ ferrimagnetic Ising model. J. Phys.: Condens. Matter 18, 10931 (2006).

https://doi.org/10.1088/0953-8984/18/48/020

P.J.B. Clarricoats, H.M. Barlow. Microwave Ferrites (Chapman & Hall, cop. Un. College, 1961).

L. Neel. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Annls. Phys. 3, 137 (1948).

S. Ferlay, T. Mallah, R. Ouah'es, P. Veillet, M. Verdaguer. A room- temperature organometallic magnet based on Prussian blue. Nature 378, 701 (1995).

https://doi.org/10.1038/378701a0

Downloads

Published

2022-12-21

How to Cite

Obaid, I., Mohamad, H., & Al-Saeedi, S. (2022). Ferrimagnetic Characteristics and Spin Compensation Temperatures of a Mixed Spin-3 and Spin-5/2 Blume–Capel Model. Ukrainian Journal of Physics, 67(9), 695. https://doi.org/10.15407/ujpe67.9.695

Issue

Section

Physics of magnetic phenomena and physics of ferroics