Phylogenetic Relationship of Cymbidium Mosaic Virus from the Native Orchids of South Kalimantan, Indonesia

Dindin Hidayatul Mursyidin(1), Ahmad Winarto Saputra(2),


(1) Laboratory of Genetics and Molecular Biology, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat. Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan, Indonesia.
(2) Laboratory of Genetics and Molecular Biology, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat. Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan, Indonesia.

Abstract

Information on viral genetics, including their phylogenetic relationship, is valuable in controlling viral infection and screening for the development of virus-resistant cultivars in the future. The objectives of this study were to detect and characterize the Cymbidium mosaic virus (CymMV) from the native orchids of South Kalimantan, Indonesia, by the RT-PCR method. Also, to determine their phylogenetic relationship based on a partial genome of RdRp by the ML and PCA methods. Following RT-PCR analysis, one of 10 samples of native orchids used was positively infected by CymMV. In early detection, the RdRp region of CymMV has approximately 530 bp in size. After being sequenced and aligned with other isolates, this region has 121 polymorphic or mutation sites, a GC content of 45.21%, a transition/transversion bias value of 3.52, and nucleotide diversity (0.0415). The phylogenetic analysis revealed that CymMV from South Kalimantan, Indonesia, has closest related to similar isolates from Korea Type 2 (AF016914.1), Niigata, Japan (AB197937.1), Hawaii (EF125180.1), and Taiwan M2 (EU314803.1), with the coefficient divergence of 0.025. But, it has very distantly related to Hawaii 18-1 (EF125178.1) with a coefficient of 0.142. The results provide urgent information in supporting the native orchid's conservation and breeding efforts, locally and globally, including mitigating or controlling the viral infection and screening for the development of virus-free or resistant cultivars in the future.

Keywords

Breeding and conservation; mosaic virus; orchids; plant protection; RT-PCR

Full Text:

PDF

References

Acosta-Leal, R., Duffy, S., Xiong, Z., Hammond, R. W., & Elena, S. F. (2011). Advances in plant virus evolution: Translating evolutionary insights into better disease management. Phytopathology, 101(10), 1136–1148. https://doi.org/10.1094/PHYTO-01-11-0017

Carr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. In Advances in Virus Research (Vol. 76, Issue C, pp. 57–121). Elsevier, Inc. https://doi.org/10.1016/S0065-3527(10)76003-6

Domingo, E. (1997). The rapid evolution of viral RNA genomes. Symposium: Newly Emerging Viral Diseases: What Role for Nutrition?, 958S-961S. https://academic.oup.com/jn/article-abstract/127/5/958S/4724131

Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and emergence of plant viruses. In Advances in Virus Research (Vol. 88, pp. 161–191). Academic Press Inc. https://doi.org/10.1016/B978-0-12-800098-4.00003-9

Jia, H., & Gong, P. (2019). A structure-function diversity survey of the RNA-dependent RNA polymerases from the positive-strand RNA viruses. Frontiers in Microbiology, 10(August), 1–11. https://doi.org/10.3389/fmicb.2019.01945

Jiang, Y., Yin, W., & Xu, H. E. (2021). RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochemical and Biophysical Research Communications, 538, 47–53. https://doi.org/10.1016/j.bbrc.2020.08.116

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Lai, T., Deng, Y., Zhang, P., Chen, Z., Hu, F., Zhang, Q., Hu, Y., & Shi, N. (2013). Proteomics-based analysis of Phalaenopsis amabilis in response toward Cymbidium mosaic virus and/or Odontoglossum ringspot virus infection. American Journal of Plant Sciences, 04(09), 1853–1862. https://doi.org/10.4236/ajps.2013.49228

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Lee, S. C., Pai, H., Huang, Y. W., He, M. H., Song, Y. L., Kuo, S. Y., Chang, W. C., Hsu, Y. H., & Lin, N. S. (2021). Exploring the multifunctional roles of Odontoglossum ringspot virus p126 in facilitating Cymbidium mosaic virus cell-to-cell movement during mixed infection. Viruses, 13(8), 1–61. https://doi.org/10.3390/v13081552

Liu, A., Zhao, Y., Ruan, S., & Shen, G. (2009). Quantitative detection of Cymbidium mosaic virus by real-time PCR. Frontiers of Biology in China, 4(3), 314–320. https://doi.org/10.1007/s11515-009-0026-5

Liu, H., Jacquemyn, H., He, X., Chen, W., Huang, Y., Yu, S., Lu, Y., & Zhang, Y. (2021). The impact of human pressure and climate change on the habitat availability and protection of Cypripedium (Orchidaceae) in Northeast China. Plant, 10(84), 1–15. https://doi.org/10.3390/plants

Loog, M. (2018). Supervised classification: Quite a brief overview. In Machine Learning Techniques for Space Weather (pp. 113–145). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811788-0.00005-6

Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., & Hidayat, A. (2021). Genetic diversity and relationships of Phalaenopsis based on the rbcL and trnL-F markers: In silico approach. Biosaintifika: Journal of Biology & Biology Education, 13(2), 212–221. https://doi.org/10.15294/biosaintifika.v13i2.29904

Muslimah, A., Rachmawaty, D., Hoesain, F. F., Ninsyh, R., & Yulianto. (2011). Charm of the Meratus Orchid [Pesona Anggrek Meratus]. Indonesian Orchid Association of South Kalimantan.

Park, C. Y., Baek, D. S., Oh, J., Choi, J.-Y., Bae, D. H., Kim, J.-S., Jang, G.-H., & Lee, S.-H. (2016). Survey of the incidence of viral infections in Calanthe spp. and characterization of a GW isolate of Cymbidium mosaic virus in Korea. Research in Plant Disease, 22(2), 65–71. https://doi.org/10.5423/rpd.2016.22.2.65

Petersen, G., & Seberg, O. (2002). Molecular evolution and phylogenetic application of DMC1. Molecular Phylogenetics and Evolution, 22(1), 43–50. https://doi.org/10.1006/mpev.2001.1011

Pradhan, S., Regmi, T., Ranjit, M., & Pant, B. (2016). Production of virus-free orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques. Heliyon, 2(10). https://doi.org/10.1016/j.heliyon.2016.e00176

Seoh, M.-L., Wong, S.-M., & Zhang, L. (1998). Simultaneous TD/RT-PCR detection of Cymbidium mosaic potexvirus and Odontoglossum ringspot tobamovirus with a single pair of primers. Journal of Virological Methods, 72, 197–204.

Shu, B., & Gong, P. (2016). Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proceedings of the National Academy of Sciences of the United States of America, 113(28), E4005–E4014. https://doi.org/10.1073/pnas.1602591113

Srivastava, S., Kadooka, C., & Uchida, J. Y. (2018). Fusarium species as pathogen on orchids. Microbiological Research, 207, 188–195. https://doi.org/10.1016/j.micres.2017.12.002

Sudha, D. R., & Rani, G. U. (2016). Detection, diagnosis of orchid virus and inactivation of Cymbidium mosaic virus (CYMV) on plants. International Journal of Plant Sciences, 11(2), 302–306. https://doi.org/10.15740/has/ijps/11.2/302-306

Venkataraman, S., Prasad, B. V. L. S., & Selvarajan, R. (2018). RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 10(2), 1–23. https://doi.org/10.3390/v10020076

Wang, C. J., Chen, Y. J., Jain, Y. C., Chung, W. C., Wang, C. L., & Chung, W. H. (2018). Identification of Fusarium proliferatum causing leaf spots on Cymbidium orchids in Taiwan. Journal of Phytopathology, 166(10), 675–685. https://doi.org/10.1111/jph.12730

Yusop, M. S. M., Mohamed-Hussein, Z. A., Ramzi, A. B., & Bunawan, H. (2022). Cymbidium mosaic virus infecting orchids: What, how, and what Next? In Iranian Journal of Biotechnology (Vol. 20, Issue 1). National Institute of Genetic Engineering and Biotechnology. https://doi.org/10.30498/ijb.2021.278382.3020

Zahara, M., & Win, C. C. (2019). Morphological and stomatal characteristics of two Indonesian local orchids. Journal of Tropical Horticulture, 2(2), 65. https://doi.org/10.33089/jthort.v2i2.26

Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., & Hu, H. (2018). Physiological diversity of orchids. In Plant Diversity (Vol. 40, Issue 4, pp. 196–208). KeAi Publishing Communications Ltd. https://doi.org/10.1016/j.pld.2018.06.003

Zhang, Z., Yan, Y., Tian, Y., Li, J., He, J. S., & Tang, Z. (2015). Distribution and conservation of orchid species richness in China. Biological Conservation, 181, 64–72. https://doi.org/10.1016/j.biocon.2014.10.026

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.