DOI QR코드

DOI QR Code

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement

레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구

  • 하지훈 (한국콜마 종합기술원) ;
  • 최형 (한국콜마 종합기술원) ;
  • 홍인기 (한국콜마 종합기술원) ;
  • 한상근 (한국콜마 종합기술원) ;
  • 빈범호 (아주대학교 생명과학과)
  • Received : 2022.03.23
  • Accepted : 2022.03.30
  • Published : 2022.03.30

Abstract

Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.

레틴알(RA)은 레티놀과 레티노익애씨드의 중간체로 비타민A 유도체이며 주름개선 효과가 우수하다. 본 연구에서는 drug-in-cyclodextrin-in-liposome (DCL)을 이용하여 레틴알의 안정성을 높였다. 레틴알과 hydroxypropyl-β-cyclodextrin (HP-β-CD) 복합체를 동결건조 방식으로 제조하였고, UV-Vis 분광법, FT-IR 및 SEM 이미지로 레틴알의 포접 여부를 확인하였다. 레틴알과 HP-β-CD의 비율이 1 : 15 (w/w)일 때 약 95.6% 포집되었다. 레틴알-HP-β-CD 복합체는 호모믹서 및 마이크로플루다이저로 리포좀에 담지시켰으며, 평균 입자 크기는 215.3 ± 4.2 nm, 제타포텐셜 -33.2 ± 1.5 mv로 나타났다. 레틴알의 분해 안정도 평가에서, 물에서 레틴알-HP-β-CD-리포좀의 레틴알 감소율은 1.8%로 레틴알-리포좀(5.8%), 레틴알-HP-β-CD복합체(9.7%), 레틴알 단독(37.6%)보다 높게 나타났다. 레틴알-HP-β-CD-리포좀이 함유된 크림(0.05% RA 함유)을 제조하여, 미간, 이마, 목, 눈가, 입가, 팔자 주름개선 효능 및 피부 치밀도를 2 ~ 4 주간 평가하였다. 그 결과 레틴알크림은 피부 자극 없이 유의한 주름 개선 효과를 보였다. 결론적으로, DCL시스템을 이용한 이중 안정화 기술은 레틴알의 안정화를 높여 피부 주름 개선 효과에 기여함을 확인하였다.

Keywords

References

  1. S. Gibbs, C. Backendorf, and M. Ponec, Regulation of keratinocyte proliferation and differentiation by all-trans-retinoic acid, 9-cis-retinoic acid and 1, 25-dihydroxy vitamin D3, Arch. Dermatol. Res., 288(12), 729 (1996). https://doi.org/10.1007/BF02505289
  2. S. Mukherjee, A. Date, V. Patravale, H. Christian Korting, A. Roeder, and G. Weindl, Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety, Clin. Interv. Aging, 1(4), 327 (2006). https://doi.org/10.2147/ciia.2006.1.4.327
  3. G. Siegenthaler, J. H. Saurat and M. Ponec, Retinol and retinal metabolism. Relationship to the state of differentiation of cultured human keratinocytes, Biochem J., 268(2), 371 (1990). https://doi.org/10.1042/bj2680371
  4. J. H Saurat, L. Didierjean, E. Masgrau, P.A. Piletta, S. Jaconi, D. Chatellard-Gruaz, D. Gumowski, I. Masouy, D. Salomon, G. Siegenthaler, Topical retinaldehyde on human skin: biologic effects and tolerance, J. Invest. Dermatol., 103(6), 770 (1994). https://doi.org/10.1111/1523-1747.ep12412861
  5. J. Peter, J. Stanek and S. Gupta, Retinaldehyde cyclodextrin complex for topical skin therapy, Glob. Dermatol., 2(6), 232 (2015).
  6. T. Loftsson and M. E. Brewster, Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes, J. Pharm. Pharmacol., 63(9), 1119 (2011). https://doi.org/10.1111/j.2042-7158.2011.01279.x
  7. J. Chen, W. L. Lu, W. Gu, S. S. Lu, Z. P. Chen, B. C. Cai, and X. X. Yang, Drug-in-cyclodextrin-in liposomes: a promising delivery system for hydrophobic drugs, Expert. Opin. Drug. Deliv., 11(4), 565 (2014). https://doi.org/10.1517/17425247.2014.884557
  8. B. McCormack and G. Gregoriadis, Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery, Int. J. Pharm., 112(3), 249 (1994). https://doi.org/10.1016/0378-5173(94)90361-1
  9. M. C. Lira, M. S. Ferraz, D. G. da Silva, M. E. Cortes, K. I . Teixeira, N. P. Caetano, and N. S. Santos-Magalhes, Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes, J. Incl. Phenom. Macrocycl. Chem., 64, 215 (2009). https://doi.org/10.1007/s10847-009-9554-5
  10. K. Cal and K. Centkowska, Use of cyclodextrins in topical formulations: practical aspects, Eur. J. Pharm. Biopharm., 68(3), 467 (2008). https://doi.org/10.1016/j.ejpb.2007.08.002
  11. F. Maestrlli, M. L. Gonzlez-Rodrguez, A. M. Rabasco, C. Ghelardini, and P. Mura, New drug-in cyclodextrin-in deformable liposomes formulations to improve the therapeutic efficacy of local anaesthetics, Int. J. Pharm., 395(1-2), 222 (2010). https://doi.org/10.1016/j.ijpharm.2010.05.046
  12. D. Chirio, R. Cavalli, F. Trotta, M. E. Carlotti, and M. Trotta, Deformable liposomes containing alkylcarbonates of γ-cyclodextrins for dermal applications, J. Incl. Phenom. Macrocycl. Chem., 57, 645 (2007). https://doi.org/10.1007/s10847-006-9271-2
  13. N. Kaur, R. Puri, and S. K. Jain, Drug-cyclodextrin-vesicles dual carrier approach for skin targeting of anti-acne agent, AAPS. Pharm. Sci. Tech., 11(2), 528 (2010). https://doi.org/10.1208/s12249-010-9411-2
  14. G. M. E. Maghraby, A. C. Williams, and B. W. Barry, Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration, Int. J. Pharm. 196(1), 63 (2000). https://doi.org/10.1016/S0378-5173(99)00441-X
  15. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and ethosomes: mechanism of enhanced skin delivery, Int. J. Pharm. 322(1), 60 (2006). https://doi.org/10.1016/j.ijpharm.2006.05.027
  16. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: reviewing three decades of research, Int. J. Pharm. 332(1-2), 1 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  17. E. H. Gokce, E. Korkmaz, E. Dellera, G. Sandri, M. C. Bonferoni, and O. Ozer, Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications, Int. J. Nanomedicine,, 7, 1841 (2012).
  18. H. P. Singh, A. K. Tiwary, and S. Jain, Preparation and in vitro, in vivo characterization of elastic liposomes encapsulating cyclodextrin-colchicine complexes for topical delivery of colchicine, Yakugaku Zasshi, 130(3), 397 (2010). https://doi.org/10.1248/yakushi.130.397
  19. M. S. Nagarsenker, L. Amin, and A. A. Date, Potential of cyclodextrin complexation and liposomes in topical delivery of ketorolac: in vitro and in vivo evaluation, AaPs Pharm. Sci. Tech., 9(4), 1165 (2008). https://doi.org/10.1208/s12249-008-9157-2
  20. J. Shaji and S. Iyer, Double-loaded liposomes encapsulating quercetin and quercetin beta-cyclodextrin complexes: preparation, characterization and evaluation, Asian J. Pharm., 6, 218 (2012). https://doi.org/10.4103/0973-8398.104840
  21. S. Muoz Botella, M. A. Martn, B. del Castillo, J. C. Menndez, L. Vzquez, and D. A. Lerner, Analytical applications of retinoid-cyclodextrin inclusion complexes. 1. Characterization of a retinal-beta-cyclodextrin complex, J. Pharm. Biomed. Anal., 14(8-10), 909 (1996). https://doi.org/10.1016/0731-7085(95)01672-4
  22. M. Zhang, J. Li, L. Zhang, and J. Chao, Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-beta-cyclodextrin, Spectrochim Acta. A. Mol. Biomol. Spectrosc., 71(5), 1891 (2009). https://doi.org/10.1016/j.saa.2008.07.014
  23. A. Delrivo, A. Zoppi, and M. R. Longhi, Interaction of sulfadiazine with cyclodextrins in aqueous solution and solid state, Carbohydr. Polym., 87(3), 1980 (2012). https://doi.org/10.1016/j.carbpol.2011.10.025
  24. A. Gillet, F. Lecomte, P. Hubert, E. Ducat, B. Evrard, and G. Piel, Skin penetration behaviour of liposomes as a function of their composition, Eur. J. Pharm. Biopharm., 79(1), 43 (2011). https://doi.org/10.1016/j.ejpb.2011.01.011
  25. Z. Hammoud, N. Khreich, L. Auezova, S. Fourmentin, A. Elaissari, and H. Greige-Gerges, Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance, Int. J. Pharm., 564, 59 (2019). https://doi.org/10.1016/j.ijpharm.2019.03.063