Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter (O) March 12, 2024

Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure

  • Jhelai Sahadevan , Mugesh Madavan , Esakki Muthu Sankaran EMAIL logo , Ikhyun Kim , Rajesh Venkatesan , Naiyf S. Alharbi , Jamal M. Khaled and Sivaprakash Paramasivam

Abstract

In this article we report the structural, morphology, vibrational, optical and magnetic properties of Ba x La1−xCoO3 (x = 0, 0.05, and 0.1) (LBCO) samples. The X-ray diffraction shows that samples are in single rhombohedral phase. The Raman signals of LCO were quite small in comparison to LBCO, which exhibited a Raman peak above 675 cm−1. The band seen with a wavenumber of 484 cm−1 corresponds to the vibrational modes of Eg bending and Ba–O stretching. UV–DRS and photoluminescence spectra indicated broad absorption over the ultraviolet, visible, and near-infrared spectrums. Surface morphology and EDAX spectra corroborated the materials homogeneous size distribution and homogenous microstructure, with Ba indicating a more stable structure. XPS was used to study chemical states of LBCO and found Co (2p), La (3d), O (1s), and C (1s) elements in perovskite compounds. A peak beneath 300 eV indicated adventitious carbon on surface materials. XPS survey spectrum elements La, Ba, Co, and O had their own binding energies. The magnetization-field dependency of LBCO at 300 K showed that Ba insertion into the LCO switched it from paramagnetic to weak ferromagnetic. Ba considerably decreased magnetic saturation and coercivity, influencing magneto-crystallites’ anisotropy and coercive field.


Corresponding author: Esakki Muthu Sankaran, Centre for Material Science, Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641 021, India, E-mail:

Funding source: Researchers Supporting Project number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia

Award Identifier / Grant number: Project Number (RSP2024R70)

Acknowledgments

The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Researchers Supporting Project number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Koehler, W. C., Wollan, E. O. J. Phys. Chem. Solids 1957, 2, 100–106. https://doi.org/10.1016/0022–3697(57)90095–1.10.1016/0022-3697(57)90095-1Search in Google Scholar

2. Harry Yakvl, B. L. Acta Crystallogr. 1955, 8, 394–398. https://doi.org/10.1107/S0365110X55001291.Search in Google Scholar

3. Señarís-Rodríguez, M. A., Goodenough, J. B. J. Solid State Chem. 1995, 116, 224–231. https://doi.org/10.1006/jssc.1995.1207.Search in Google Scholar

4. Song, Y., Sun, Q., Lu, Y., Liu, X., Wang, F. J. Alloys Compd. 2012, 536, 150–154. https://doi.org/10.1016/j.jallcom.2012.05.001.Search in Google Scholar

5. Farhadi, S., Sepahvand, S. J. Alloys Compd. 2010, 489, 586–591. https://doi.org/10.1016/j.jallcom.2009.09.117.Search in Google Scholar

6. Haas, O., Struis, R. P. W. J., McBreen, J. M. J. Solid State Chem. 2004, 177, 1000–1010. https://doi.org/10.1016/j.jssc.2003.10.004.Search in Google Scholar

7. Shu, G. J., Wu, P. C., Chou, F. C. RSC Adv. 2020, 10, 43117–43128. https://doi.org/10.1039/d0ra09675j.Search in Google Scholar PubMed PubMed Central

8. Phillipps, M. B., Sammes, N. M., Yamamoto, O. J. Mater. Sci. 1996, 31, 1689–1692. https://doi.org/10.1007/BF00372179.Search in Google Scholar

9. Jhelai, S., Radhakrishnan, M., Padmanathan, N., Esakki Muthu, S., Sivaprakash, P., Kadiresan, M. Mater. Sci. Eng. B 2022, 284, 115875. https://doi.org/10.1016/J.MSEB.2022.115875.Search in Google Scholar

10. Sahadevan, J., Sivaprakash, P., Esakki Muthu, S., Kim, I., Padmanathan, N., Eswaramoorthi, V. Int. J. Mol. Sci. 2023, 24, 10107. https://doi.org/10.3390/ijms241210107.Search in Google Scholar PubMed PubMed Central

11. Tepech-Carrillo, L., Escobedo-Morales, A., Pérez-Centeno, A., Chigo-Anota, E., Sánchez-Ramírez, J. F., López-Apreza, E., Gutiérrez-Gutiérrez, J. J. Nanomater. 2016, 6917950, 1687–4110. https://doi.org/10.1155/2016/6917950.Search in Google Scholar

12. Ansari, A. A., Adil, S. F., Alam, M., Ahmad, N., Assal, M. E., Labis, J. P., Alwarthan, A. Sci. Rep. 2020, 10, 1–13. https://doi.org/10.1038/s41598–020–71869–z.Search in Google Scholar

13. Lu, Y., Dai, Q., Wang, X. Catal. Commun. 2014, 54, 114–117; https://doi.org/10.1016/J.CATCOM.2014.05.018.Search in Google Scholar

14. ben Hammouda, S., Zhao, F., Safaei, Z., Babu, I., Ramasamy, D. L., Sillanpää, M. Appl. Catal. B Environ. 2017, 218, 119–136. https://doi.org/10.1016/J.APCATB.2017.06.047.Search in Google Scholar

15. Zhu, H., Yang, D., Yang, H., Zhu, L., Li, D., Jin, D., Yao, K. J. Nanopart. Res. 2008, 10, 307–312. https://doi.org/10.1007/s11051–007–9250–6.10.1007/s11051-007-9250-6Search in Google Scholar

16. Mu, Q., Wang, Y. J. Alloys Compd. 2011, 509, 396–401. https://doi.org/10.1016/j.jallcom.2010.09.041.Search in Google Scholar

17. Ansari, A. A., Adil, S. F., Alam, M., Ahmad, N., Assal, M. E., Labis, J. P., Alwarthan, A. Sci. Rep. 2020, 10, 15012. https://doi.org/10.1038/s41598–020–71869–z.10.1038/s41598-020-71869-zSearch in Google Scholar PubMed PubMed Central

18. Ansari, A. A., Labis, J., Alam, M., Ramay, S. M., Ahmad, N., Mahmood, A. J. Electroceram. 2016, 36, 150–157. https://doi.org/10.1007/s10832–016–0018–1.10.1007/s10832-016-0018-1Search in Google Scholar

19. Ansari, A. A., Labis, J., Alam, M., Ramay, S. M., Ahmad, N., Mahmood, A. Phase Transitions 2016, 89, 261–272. https://doi.org/10.1080/01411594.2015.1116532.Search in Google Scholar

20. Popa, M., Frantti, J., Kakihana, M. Solid State Ionics 2002, 154–155, 135–141. https://doi.org/10.1016/S0167–2738(02)00421–6.10.1016/S0167-2738(02)00421-6Search in Google Scholar

21. Iliev, M. N., Abrashev, M. V. J. Raman Spectrosc. 2001, 32, 805–811. https://doi.org/10.1002/jrs.770.Search in Google Scholar

22. Orlovskaya, N., Steinmetz, D., Yarmolenko, S., Pai, D., Sankar, J., Goodenough, J. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 014122; https://doi.org/10.1103/PhysRevB.72.014122.Search in Google Scholar

23. Thirumalairajan, S., Girija, K., Hebalkar, N. Y., Mangalaraj, D., Viswanathan, C., Ponpandian, N. RSC Adv. 2013, 3, 7549–7561. https://doi.org/10.1039/c3ra00006k.Search in Google Scholar

24. Ling, F., Anthony, O. C., Xiong, Q., Luo, M., Pan, X., Jia, L., Huang, J., Sun, D., Li, Q. Int. J. Hydrogen Energy 2016, 41, 6115–6122. https://doi.org/10.1016/j.ijhydene.2015.10.036.Search in Google Scholar

25. Serantes, D., Baldomir, D. Nanomaterials 2021, 11, 2786. https://doi.org/10.3390/NANO11112786.Search in Google Scholar

26. Haber, J., Ungier, L. J. Electron Spectrosc. Relat. Phenom. 1977, 12, 305–312. https://doi.org/10.1016/0368–2048(77)85081–0.10.1016/0368-2048(77)85081-0Search in Google Scholar

27. Mcintyre, N. S., Johnston, D. D., Coatsworth, L. L., Davidson, R. D., Brown, J. R. 1990, 15, 265–272. https://doi.org/10.1002/sia.740150406.Search in Google Scholar

28. Wang, H., Xu, W., Richins, S., Liaw, K., Yan, L., Zhou, M., Luo, H. Electrochim. Acta 2019, 296, 945–953. https://doi.org/10.1016/j.electacta.2018.11.075.Search in Google Scholar

29. Seim, H., Nieminen, M., Niinistö, L., Fjellvåg, H., Johansson, L. S. Appl. Surf. Sci. 1997, 112, 243–250. https://doi.org/10.1016/S0169–4332(96)01001–X.10.1016/S0169-4332(96)01001-XSearch in Google Scholar

30. Ramana, C. V., Vemuri, R. S., Kaichev, V. V., Kochubey, V. A., Saraev, A. A., Atuchin, V. V. ACS Appl. Mater. Interfaces 2011, 3, 4370–4373. https://doi.org/10.1021/am201021m.Search in Google Scholar PubMed

31. Jiang, X., Dong, Y., Zhang, Z., Li, J., Qian, J., Gao, D. J. Alloys Compd. 2021, 878, 160433. https://doi.org/10.1016/J.JALLCOM.2021.160433.Search in Google Scholar

32. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maragno, C., Tondello, E. Surf. Sci. Spectra 2003, 10, 143–149. https://doi.org/10.1116/11.20040303.Search in Google Scholar

33. Jhelai, S., Sanjay, R., Esakki Muthu, S., Kim, I., Vivekananthan, V., Ansar, S., Sivaprakash, P. Mater. Sci. Eng. B 2023, 296, 116669. https://doi.org/10.1016/j.mseb.2023.116669.Search in Google Scholar

34. Craciun, V., Singh, R. K. Appl. Phys. Lett. 2000, 76, 1932–1934. https://doi.org/10.1063/1.126216.Search in Google Scholar

35. Fujisaki, Y., Shimamoto, Y., Matsui, Y. Jpn. J. Appl. Phys. 1999, 38, L52. https://doi.org/10.1143/JJAP.38.L52.Search in Google Scholar

36. Miot, C., Proustz, C., Husson, E., Erre, R., Blondiaux, G., Beny, J. M., Coutures, J. P. Mater. Sci. Eng. B 1997, 45, 17–24. https://doi.org/10.1016/S0921–5107(96)02013–2.10.1016/S0921-5107(96)02013-2Search in Google Scholar

37. Miot, C., Husson, E., Proust, C., Erre, R., Coutures, J. P. J. Mater. Res. 1997, 12, 2388–2392. https://doi.org/10.1557/JMR.1997.0316.Search in Google Scholar

38. Droubay, T. C., Kong, L., Chambers, S. A., Hess, W. P. Surf. Sci. 2015, 632, 201–206. https://doi.org/10.1016/j.susc.2014.07.010.Search in Google Scholar

39. Branford, W., Green, M. A., Neumann, D. A. Chem. Mater. 2002, 14, 1649–1656. https://doi.org/10.1021/cm010857a.Search in Google Scholar

40. Thummer, K. P., Chhantbar, M. C., Modi, K. B., Joshi, H. H. Indian J. Phys. 2005, 79, 41–45.Search in Google Scholar

41. Liang, H., Hong, Y., Zhu, C., Li, S., Chen, Y., Liu, Z., Ye, D. Catal. Today 2013, 201, 98–102. https://doi.org/10.1016/J.CATTOD.2012.04.036.Search in Google Scholar

42. Smyrnioti, M., Ioannides, T. Synthesis of cobalt-based nanomaterials from organic precursors. In Cobalt; InTech: UK, 2017.10.5772/intechopen.70947Search in Google Scholar

Received: 2024-01-22
Accepted: 2024-02-19
Published Online: 2024-03-12

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2024-0600/html
Scroll to top button