Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter (O) March 12, 2024

Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode

  • Indira Priyadharsini Chinnuraj , Marimuthu Ganesan , Govindasamy Palanisamy , Ponnusamy Munusamy Anbarasan EMAIL logo , Ikhyun Kim , Imran Hasan and Sivaprakash Paramasivam

Abstract

In recent times, the convergence of metal oxide adorned graphene oxide (GO) composites has ignited substantial notice, driven by their potential to revolutionize electrochemical energy storage applications, particularly in the realm of supercapacitors. This surge in attention is attributable to the harmonious amalgamation of metal oxide nanoparticles with the versatile GO sheets, resulting in intricately nanostructured materials. The present investigation the synthesis of hybrid done by hydrothermal route, yielding nanostructured Co3O4/GO. Extensive electrochemical assessment reveals a pinnacle specific capacitance of 786.69 F/g at 1 mA/cm2 current density within a 3 mol L−1 KOH aqueous medium, accompanied by commendable rate-handling capabilities.


Corresponding author: Ponnusamy Munusamy Anbarasan, Department of Physics, Periyar University, Salem 636 011, Tamil Nadu, India, E-mail:

Funding source: King Saud University, Riyadh, Saudi Arabia

Award Identifier / Grant number: Researchers Supporting Project Number (RSPD2024R670)

Funding source: Korea government (MIST)

Award Identifier / Grant number: National Research Foundation of Korea (NRF) No. 2022R1C1C1006414

Acknowledgments

The authors express their sincere appreciation to the Researchers Supporting Project Number (RSPD2024R670) King Saud University, Riyadh, Saudi Arabia. The authors would like to thank the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors express their sincere appreciation to the Researchers Supporting Project Number (RSPD2024R670) King Saud University, Riyadh, Saudi Arabia. The authors would like to thank the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Srinivasan, P., Sahadevan, J., Sankaran, E. M., Kim, I., Arangarasan, V., Paramasivam, S. Investigating the impact of sodium (Na) dopant on the structural, morphological, optical, and magnetic properties of LaPrSrMnO3 perovskite nanoflakes. Z. Phys. Chem. 2024; https://doi.org/10.1515/zpch-2023-0490.Search in Google Scholar

2. Xu, J., Wang, Q., Wang, X., Xiang, Q., Liang, B., Chen, D., Shen, G. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453–5462; https://doi.org/10.1021/nn401450s.Search in Google Scholar PubMed

3. Fan, L. Q., Liu, G. J., Zhang, C. Y., Wu, J. H., Wei, Y. L. Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int. J. Hydrogen Energy 2015, 40, 10150–10157; https://doi.org/10.1016/j.ijhydene.2015.06.061.Search in Google Scholar

4. Tang, Y., Chen, T., Yu, S., Qiao, Y., Mu, S., Hu, J., Gao, F. Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J. Mater. Chem. A 2015, 3, 12913–12919; https://doi.org/10.1039/c5ta02480c.Search in Google Scholar

5. Xiang, D., Yin, L., Wang, C., Zhang, L. High electrochemical performance of RuO2-Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 2016, 106, 103–111; https://doi.org/10.1016/j.energy.2016.02.141.Search in Google Scholar

6. Jayashree, M., Parthibavarman, M., Prabhakaran, S. Hydrothermal-induced ɑ-Fe2O3/graphene nanocomposite with ultrahigh capacitance for stabilized and enhanced supercapacitor electrodes. Ionics 2019, 25, 3309–3319; https://doi.org/10.1007/s11581-019-02859-z.Search in Google Scholar

7. Kumar, M., Chauhan, H., Satpati, B., Deka, S. Yolk type asymmetric Ag-Cu2O hybrid nanoparticles on graphene substrate as efficient electrode material for hybrid supercapacitors. Z. Phys. Chem. 2019, 233, 85–104; https://doi.org/10.1515/zpch-2017-1067.Search in Google Scholar

8. Sivaprakash, P., Kumar, K. A., Muthukumaran, S., Pandurangan, A., Dixit, A., Arumugam, S. NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

9. Rolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P., Mc Evoy, T. M., Bourg, M. E., Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252; https://doi.org/10.1039/b801151f.Search in Google Scholar PubMed

10. Simon, P., Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. https://doi.org/10.1038/nmat2297.Search in Google Scholar PubMed

11. Xu, H., Zhuang, J. X., Li, J. L., Zhang, J. L., Lu, H. L. Liquid precipitation synthesis of Co3O4 for high-performance electrochemical capacitors. Ionics 2014, 20, 489–494; https://doi.org/10.1007/s11581-013-0998-7.Search in Google Scholar

12. Li, Z., Wang, J., Liu, S., Liu, X., Yang, S. Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. J. Power Sources 2011, 196, 8160–8165; https://doi.org/10.1016/j.jpowsour.2011.05.036.Search in Google Scholar

13. Sivakumar, A., Dhas, S. S. J., Sivaprakash, P., Raj, A. D., Kumar, R. S., Arumugam, S., Prabhu, S., Ramesh, R., Chakraborty, S., Dhas, S. A. M. B. Shock wave recovery experiments on α-V2O5 nano-crystalline materials: a potential material for energy storage applications. J. Alloys Compd. 2022, 929, 167180; https://doi.org/10.1016/j.jallcom.2022.167180.Search in Google Scholar

14. Zhang, Q., Wu, X., Zhang, Q., Yang, F., Dong, H., Sui, J., Dong, L. One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage. J. Electroanal. Chem. 2019, 837, 108–115; https://doi.org/10.1016/j.jelechem.2019.02.031.Search in Google Scholar

15. Simfukwe, J., Mapasha, R. E., Braun, A., Diale, M. Biopatterning of keratinocytes in aqueous two-phase systems as a potential tool for skin tissue engineering. MRS Adv. 2017, 357, 1–8; https://doi.org/10.1557/adv.201.Search in Google Scholar

16. Sakthivel, S., Paramasivam, S., Velusamy, P., Jerries Infanta, J. A. D., Ragavendran, V., Mayandi, J., Arumugam, S., Kim, I. Experimental investigation of structural, morphological, and optical characteristics of SrTiO3 nanoparticles using a shock tube for photocatalytic applications. Z. Phys. Chem. 2024; https://doi.org/10.1515/zpch-2023-0486.Search in Google Scholar

17. Palanisamy, G., Bhuvaneswari, K., Srinivasan, M., Vignesh, S., Elavarasan, N., Venkatesh, G., Pazhanivel, T., Ramasamy, P. Two-dimensional g-C3N4 nanosheets supporting Co3O4-V2O5 nanocomposite for remarkable photodegradation of mixed organic dyes based on a dual Z-scheme photocatalytic system. Diam. Relat. Mater. 2021, 118, 108540; https://doi.org/10.1016/j.diamond.2021.108540.Search in Google Scholar

18. Wang, G., Cao, D., Yin, C., Gao, Y., Yin, J., Cheng, L. Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction. Chem. Mater. 2009, 21, 5112–5118; https://doi.org/10.1021/cm901928b.Search in Google Scholar

19. Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., Lei, Y. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 2010, 26, 542–548; https://doi.org/10.1016/j.bios.2010.07.050.Search in Google Scholar PubMed

20. Yu, T., Zhu, Y., Xu, X., Shen, Z., Chen, P., Lim, C. T., Thong, J. T. L., Sow, C. H. Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv. Mater. 2005, 17, 1595–1599; https://doi.org/10.1002/adma.200500322.Search in Google Scholar

21. Wang, X., Wu, X. L., Guo, Y. G., Zhong, Y., Cao, X., Ma, Y., Yao, J. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686; https://doi.org/10.1002/adfm.200902295.Search in Google Scholar

22. Wang, G., Shen, X., Horvat, J., Wang, B., Liu, H., Wexler, D., Yao, J. Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C 2009, 113, 4357–4361; https://doi.org/10.1021/jp8106149.Search in Google Scholar

23. Srinivasan, V., Weidner, J. W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources 2002, 108, 15–20; https://doi.org/10.1016/S0378-7753(01)01012-6.Search in Google Scholar

24. Wang, W., Guo, S., Lee, I., Ahmed, K., Zhong, J., Favors, Z., Zaera, F., Ozkan, M., Ozkan, C. S. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 2014, 4, 9–14; https://doi.org/10.1038/srep04452.Search in Google Scholar PubMed PubMed Central

25. Zhou, G., Wang, D. W., Yin, L. C., Li, N., Li, F., Cheng, H. M. Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223; https://doi.org/10.1021/nn300098m.Search in Google Scholar PubMed

26. Xu, Y., Huang, X., Lin, Z., Zhong, X., Huang, Y., Duan, X. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76; https://doi.org/10.1007/s12274-012-0284-4.Search in Google Scholar

27. Wang, H., Casalongue, H. S., Liang, Y., Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477; https://doi.org/10.1021/ja102267j.Search in Google Scholar PubMed

28. Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X. Graphene oxide MnO2. ACS Nano 2010, 4, 2822–2830; https://doi.org/10.1021/nn901311t.Search in Google Scholar PubMed

29. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786; https://doi.org/10.1038/nmat3087.Search in Google Scholar PubMed

30. Lin, H., Huang, Q., Wang, J., Jiang, J., Liu, F., Chen, Y., Wang, C., Lu, D., Han, S. Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 2016, 191, 444–451; https://doi.org/10.1016/j.electacta.2015.12.143.Search in Google Scholar

31. Sun, J., Li, Z., Wang, J., Hong, W., Gong, P., Wen, P., Wang, Z., Yang, S. Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J. Alloys Compd. 2015, 643, 231–238; https://doi.org/10.1016/j.jallcom.2015.04.137.Search in Google Scholar

32. Benka, S. G. Two-dimensional atomic crystals. Phys. Today. 2005, 58, 9; https://doi.org/10.1063/1.4797258.Search in Google Scholar

33. Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater. 2009, 6, 11–19; https://doi.org/10.1142/9789814287005_0002.Search in Google Scholar

34. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286; https://doi.org/10.1038/nature04969.Search in Google Scholar PubMed

35. Wang, B., Wang, Y., Park, J., Ahn, H., Wang, G. In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J. Alloys Compd. 2011, 509, 7778–7783; https://doi.org/10.1016/j.jallcom.2011.04.152.Search in Google Scholar

36. Naveen, A. N., Manimaran, P., Selladurai, S. Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application. J. Mater. Sci. Mater. Electron. 2015, 26, 8988–9000; https://doi.org/10.1007/s10854-015-3582-2.Search in Google Scholar

37. Deng, X., Li, J., Zhu, S., He, F., He, C., Liu, E., Shi, C., Li, Q., Zhao, N. Metal–organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors. J. Alloys Compd. 2017, 693, 16–24; https://doi.org/10.1016/j.jallcom.2016.09.096.Search in Google Scholar

38. Zhang, H., Liu, W., Tian, F., Tang, Z., Lin, H. The fabrication of a Co3O4/graphene oxide (GO)/polyacrylonitrile (PAN) nanofiber membrane for the degradation of Orange II by advanced oxidation technology. RSC Adv. 2019, 9, 36517–36523; https://doi.org/10.1039/C9RA06656J.Search in Google Scholar PubMed PubMed Central

39. Singh, S. K., Dhavale, V. M., Kurungot, S. Surface tuned Co3O4 nanoparticles dispersed on nitrogen doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application. ACS Appl. Mater. Interfaces 2015, 7, 21138–21149.10.1021/acsami.5b04865Search in Google Scholar PubMed

40. Palacio, R., Torres, S., Lopez, D., Hernandez, D. Selective glycerol conversion to lactic acid on Co3O4/CeO2 catalysts. Catal. Today 2017, 302, 196–202; https://doi.org/10.1016/j.cattod.2017.05.053.Search in Google Scholar

41. Zhang, Y., Liu, M., Sun, S., Yang, L. The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor. Adv. Compos. Lett. 2020, 29, 1–7; https://doi.org/10.1177/2633366X20909839.Search in Google Scholar

42. Manjula, N., Vinothkumar, V., Chen, S. M., Sangili, A. Simultaneous and sensitive detection of dopamine and uric acid based on cobalt oxide-decorated graphene oxide composite. J. Mater. Sci. Mater. Electron. 2020, 31, 12595–12607; https://doi.org/10.1007/s10854-020-03810-z.Search in Google Scholar

43. Lakra, R., Kumar, R., Sahoo, P. K., Sharma, D., Thatoi, D., Soam, A. Facile synthesis of cobalt oxide and graphene nanosheets nanocomposite for aqueous supercapacitor application. Carbon Trends 2022, 7, 100144; https://doi.org/10.1016/j.cartre.2021.100144.Search in Google Scholar

44. Kong, C., Liu, F., Sun, H., Zhang, Z., Zhu, B., Li, W. Co3O4/GO catalyst as efficient heterogeneous catalyst for degradation of wastewater containing polyacrylamide (PAM). Water Cycle 2021, 2, 15–22; https://doi.org/10.1016/j.watcyc.2020.12.001.Search in Google Scholar

45. Madhura, T. R., Gnana Kumar, G., Ramaraj, R. Reduced graphene oxide-supported Co3O4 nanocomposite bifunctional electrocatalysts for glucose-oxygen fuel cells. Energy Fuels 2020, 34, 12984–12994; https://doi.org/10.1021/acs.energyfuels.0c02287.Search in Google Scholar

46. Simon, R., Chakraborty, S., Darshini, K. S., Mary, N. L. Electrolyte dependent performance of graphene–mixed metal oxide composites for enhanced supercapacitor applications. SN Appl. Sci. 2020, 2, 1898. https://doi.org/10.1007/s42452-020-03708-9.Search in Google Scholar

47. Vijayakumar, S., Nagamuthu, S., Muralidharan, G. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 2013, 5, 2188–2196; https://doi.org/10.1021/am400012h.Search in Google Scholar PubMed

48. Gaikwad, S. L., Angre, A. P., Naik, V. A., Pargaonkar, J. G., Patil, P. A., Chandekar, K. V., Chavan, A. U., Gaikar, P. S. Binderless synthesis of nanoknotnet-like cobalt oxide for supercapacitor application. Mater. Today Proc. 2020, 43, 2663–2667; https://doi.org/10.1016/j.matpr.2020.04.081.Search in Google Scholar

49. Pang, M., Long, G., Jiang, S., Ji, Y., Han, W., Wang, B., Liu, X., Xi, Y., Wang, D., Xu, F. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors. Chem. Eng. J. 2015, 280, 377–384; https://doi.org/10.1016/j.cej.2015.06.053.Search in Google Scholar

50. Jayashree, M., Parthibavarman, M., BoopathiRaja, R., Prabhu, S., Ramesh, R. Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications. J. Mater. Sci. Mater. Electron. 2020, 31, 6910–6918; https://doi.org/10.1007/s10854-020-03254-5.Search in Google Scholar

Received: 2024-01-12
Accepted: 2024-02-26
Published Online: 2024-03-12

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2024-0584/html
Scroll to top button