Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter (O) February 15, 2024

Effective synthesis of nitrogen doped carbon nanotubes over transition metal loaded mesoporous catalysts for energy storage of supercapacitor applications

  • Ragavan Rajamanickam EMAIL logo , Boopathi Ganesan , Ikhyun Kim , Imran Hasan , Pandurangan Arumugam and Sivaprakash Paramasivam

Abstract

In the present work, the nitrogen doped carbon nanotubes (NCNTs) were prepared over various transition metal loaded mesoporous SBA-15 catalysts by the CVD method for supercapacitor application. Mesoporous Siliceous SBA-15 support and transition metals (Cr, Fe, Co, Ni and Cu) loaded SBA-15 (M/SBA-15) catalysts were prepared through hydrothermal and wet impregnation process, respectively. The catalytic performance of all the prepared catalysts were evaluated by synthesizing NCNTs by CVD at 800 °C using triethylamine as the precursor. The NCNTs produced over Ni/SBA-15 have an outstanding specific capacitance of 263 F g−1 at 0.5 A g−1 in 1.0 M H2SO4 aqueous solution according to the electrochemical investigations because of its increased nitrogen content of 3.2 at.%. Furthermore, a two-electrode based symmetric device was construct and tested. The fabricated device showed the specific capacitance of 113 F g−1 at 0.5 A g−1 with high energy density of 10 W h Kg−1 at the power density of 333 W kg−1. The NCNT showed 96 % of capacitance retention even after 1000 cycles. The synergism of high nitrogen content and bamboo-like graphitized structure resulted in excellent specific capacitance, better cycle life and rate performance of the prepared NCNTs as supercapacitor electrode.


Corresponding author: Ragavan Rajamanickam, Department of Chemistry, Anna University, Chennai 600025, India, E-mail:

Funding source: The Research fund was granted by National Research Foundation of Korea (NRF)

Award Identifier / Grant number: No. 2022R1C1C1006414

Funding source: Republic of Korea and Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Award Identifier / Grant number: RSPD2024R670

Acknowledgment

The authors would like to thank the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414). The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not Applicable.

  2. Author contribution: R. R. and B. G. wrote the paper. I. K., I. H. and P. A. revised the paper. Final proof reading was done by S. P. All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The Research fund was granted by National Research Foundation of Korea (NRF) (No. 2022R1C1C1006414), Republic of Korea and Researchers Supporting Project (Ref: RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Muzaffar, A., Ahamed, M. B., Deshmukh, K., Thirumalai, J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. https://doi.org/10.1016/j.rser.2018.10.026.Search in Google Scholar

2. Boopathi, G., Ragavan, R., Jaimohan, S. M., Sagadevan, S., Kim, I., Pandurangan, A., Sivaprakash, P. Mesoporous graphitic carbon electrodes derived from boat-fruited shells of Sterculia foetida for symmetric supercapacitors for energy storage applications. Chemosphere 2024, 348, 140650; https://doi.org/10.1016/j.chemosphere.2023.140650.Search in Google Scholar PubMed

3. Ma, Q., Wang, S., Han, X., Cui, J., Jia, G., Zhang, Y., He, W. Construction of three-dimensional (3D) vertical nanosheets electrode with electrochemical capacity applied to microsupercapattery. Vacuum 2022, 198, 110914. https://doi.org/10.1016/j.vacuum.2022.110914.Search in Google Scholar

4. Lv, H., Pan, Q., Song, Y., Liu, X. X., Liu, T. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors; Springer: Singapore, 2020.10.1007/s40820-020-00451-zSearch in Google Scholar PubMed PubMed Central

5. Li, M., He, H. Study on electrochemical performance of multi-wall carbon nanotubes coated by iron oxide nanoparticles as advanced electrode materials for supercapacitors. Vaccum 2017, 143, 371–379. https://doi.org/10.1016/j.vacuum.2017.06.026.Search in Google Scholar

6. Zhang, M., Zheng, H., Zhu, H., Xu, Z., Liu, R., Chen, J., Song, Q., Song, X., Wu, J., Zhang, C., Cui, H. Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors. Vacuum 2020, 176, 109315. https://doi.org/10.1016/j.vacuum.2020.109315.Search in Google Scholar

7. Chang, B., Yin, H., Zhang, X., Zhang, S., Yang, B. Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: morphology, pore structure and supercapacitor application. Chem. Eng. J. 2017, 312, 191–203. https://doi.org/10.1016/j.cej.2016.11.129.Search in Google Scholar

8. Yan, Y., Lin, J., Jiang, J., Wang, H., Qi, J., Zhong, Z., Cao, J., Fei, W., Feng, J. A general strategy to construct N-doped carbon-confined MoO2 and MnO for high-performance hybrid supercapacitors. Vacuum 2019, 165, 179–185. https://doi.org/10.1016/j.vacuum.2019.04.033.Search in Google Scholar

9. Maity, C. K., Hatui, G., Verma, K., Udayabhanu, G., Pathak, D. D., Nayak, G. C. Single pot fabrication of N doped reduced GO (N-rGO)/ZnO-CuO nanocomposite as an efficient electrode material for supercapacitor application. Vacuum 2018, 157, 145–154. https://doi.org/10.1016/j.vacuum.2018.08.019.Search in Google Scholar

10. Shi, J., Jiang, B., Li, C., Liu, Z., Yan, F., Liu, X., Li, H., Yang, C., Dong, D., Hao, J. Study on capacitance properties of the sputtered carbon doped titanium nitride electrode material for supercapacitor. Vacuum 2022, 198, 110893. https://doi.org/10.1016/j.vacuum.2022.110893.Search in Google Scholar

11. Li, Y., Xu, X., He, Y., Jiang, Y., Lin, K. Nitrogen doped macroporous carbon as electrode materials for high capacity of supercapacitor. Polymers 2017, 9, 1–16. https://doi.org/10.3390/polym9010002.Search in Google Scholar PubMed PubMed Central

12. Kumar, R., Sahoo, S., Joanni, E., Singh, R. K., Yadav, R. M., Verma, R. K., Singh, D. P., Tan, W. K., Pérez del Pino, A., Moshkalev, S. A., Matsuda, A. A review on synthesis of graphene, H-BN and MoS2 for energy storage applications: recent progress and perspectives. Nano Res. 2019, 12, 2655–2694. https://doi.org/10.1007/s12274-019-2467-8.Search in Google Scholar

13. Choi, D., Kumta, P. N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J. Electrochem. Soc. 2006, 153, A2298–A2303. https://doi.org/10.1149/1.2359692.Search in Google Scholar

14. Aradilla, D., Pérez-Madrigal, M. M., Estrany, F., Azambuja, D., Iribarren, J. I., Alemán, C. Nanometric ultracapacitors fabricated using multilayer of conducting polymers on self-assembled octanethiol monolayers. Org. Electron. 2013, 14, 1483–1495. https://doi.org/10.1016/j.orgel.2013.03.010.Search in Google Scholar

15. Tahir, M., He, L., Yang, W., Hong, X., Haider, W. A., Tang, H., Zhu, Z., Owusu, K. A., Mai, L. Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. J. Energy Chem. 2020, 49, 224–232. https://doi.org/10.1016/j.jechem.2020.02.036.Search in Google Scholar

16. Yan, H., Li, X., Liu, M., Cui, X., Li, S., Cui, H. Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: a first-principles study. Vacuum 2022, 201, 111094. https://doi.org/10.1016/j.vacuum.2022.111094.Search in Google Scholar

17. Ma, S., Wang, Y., Liu, Z., Huang, M., Yang, H., Xu, Z. Preparation of carbon nanofiber with multilevel gradient porous structure for supercapacitor and CO2 adsorption. Chem. Eng. Sci. 2019, 205, 181–189. https://doi.org/10.1016/j.ces.2019.05.001.Search in Google Scholar

18. Wang, L., Li, X., Huang, X., Wang, Y., Jiang, J., Han, S. Hierarchical porous multi-element doped carbon material derived from abutilon for high-performance supercapacitors. Vacuum 2022, 198, 110875. https://doi.org/10.1016/j.vacuum.2022.110875.Search in Google Scholar

19. John, A. R., Arumugam, P. Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J. Power Sources 2015, 277, 387–392. https://doi.org/10.1016/j.jpowsour.2014.11.151.Search in Google Scholar

20. Pandian, P. M., Pandurangan, A. Copper nanoparticles anchored onto boron-doped graphene nanosheets for use as a high performance asymmetric solid-state supercapacitor. RSC Adv. 2019, 9, 3443–3461. https://doi.org/10.1039/c8ra08762h.Search in Google Scholar PubMed PubMed Central

21. Karthikeyan, G. G., Boopathi, G., Pandurangan, A. Facile synthesis of mesoporous carbon spheres using 3d cubic Fe-Kit-6 by Cvd technique for the application of active electrode materials in supercapacitors. ACS Omega 2018, 3, 16658–16671. https://doi.org/10.1021/acsomega.8b02160.Search in Google Scholar PubMed PubMed Central

22. Li, B., Dai, F., Xiao, Q., Yang, L., Shen, J., Zhang, C., Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. https://doi.org/10.1039/C5EE03149D.Search in Google Scholar

23. Xiao, K., Ding, L.-X., Chen, H., Wang, S., Lu, X., Wang, H. Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 372–378. https://doi.org/10.1039/C5TA08591H.Search in Google Scholar

24. Li, Y., Shang, T.-X., Gao, J.-M., Jin, X.-J. Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv. 2017, 7, 19098–19105. https://doi.org/10.1039/C7RA00132K.Search in Google Scholar

25. Zhu, Z., Xu, Z. The rational design of biomass-derived carbon materials towards next-generation energy storage: a review. Renew. Sustain. Energy Rev. 2020, 134, 110308. https://doi.org/10.1016/j.rser.2020.110308.Search in Google Scholar

26. Johnsirani, D., Pandurangan, A. Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors. Diam. Relat. Mater. 2020, 105, 107800. https://doi.org/10.1016/j.diamond.2020.107800.Search in Google Scholar

27. Devarajan, J., Arumugam, P. Boron-doped activated carbon from the stems of Prosopis juliflora as an effective electrode material in symmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 17469–17482. https://doi.org/10.1007/s10854-022-08595-x.Search in Google Scholar

28. Li, L.-X., Tao, J., Geng, X., An, B.-G. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2013, 29, 111–116. https://doi.org/10.3866/PKU.WHXB201211091.Search in Google Scholar

29. Yang, Z. Y., Zhao, Y. F., Xiao, Q. Q., Zhang, Y. X., Jing, L., Yan, Y. M., Sun, K. N. Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 8497–8504. https://doi.org/10.1021/am501362g.Search in Google Scholar PubMed

30. He, C., Shen, P. K. Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties. Electrochem. Commun. 2013, 35, 80–83. https://doi.org/10.1016/j.elecom.2013.08.007.Search in Google Scholar

31. Ragavan, R., Pandurangan, A. Exploration on magnetic and electrochemical properties of nitrogen and phosphorus co-doped ordered mesoporous carbon for supercapacitor applications. Microporous Mesoporous Mater. 2022, 338, 111959. https://doi.org/10.1016/j.micromeso.2022.111959.Search in Google Scholar

32. Zhang, D., Han, M., Li, Y. B., Lei, L., Shang, Y., Wang, K., Wang, Y., Zhang, Z., Zhang, X., Feng, H. Phosphorus and sulfur dual doped hierarchic porous carbons with superior supercapacitance performance. Electrochim. Acta 2016, 222, 141–148. https://doi.org/10.1016/j.electacta.2016.10.184.Search in Google Scholar

33. Gai, P. L., Stephan, O., McGuire, K., Rao, A. M., Dresselhaus, M. S., Dresselhaus, G., Colliex, C. Structural systematics in boron-doped single wall carbon nanotubes. J. Mater. Chem. 2004, 14, 669–675. https://doi.org/10.1039/b311696d.Search in Google Scholar

34. Wen, Y., Rufford, T. E., Hulicova-Jurcakova, D., Wang, L. Nitrogen and phosphorous co-doped graphene monolith for supercapacitors. ChemSusChem 2016, 9, 513–520. https://doi.org/10.1002/cssc.201501303.Search in Google Scholar PubMed

35. Feng, M., Lu, W., Zhou, Y., Zhen, R., He, H., Wang, Y. Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors. Sci. Rep. 2020, 10, 1–12; https://doi.org/10.1038/s41598-020-72392-x.Search in Google Scholar PubMed PubMed Central

36. Liu, Y., Huang, G., Li, Y., Yao, Y., Xing, B., Jia, J., Chen, L., Zhang, C. Nitrogen-oxygen co-doped porous carbons prepared by mild potassium hydroxide activation of cicada slough for high-performance supercapacitors. J. Energy Storage. 2020, 29, 101433. https://doi.org/10.1016/j.est.2020.101433.Search in Google Scholar

37. Huang, W., Qian, W., Luo, H., Dong, M., Shao, H., Chen, Y., Liu, X., Dong, C. Field emission enhancement from directly grown N-doped carbon nanotubes on stainless steel substrates. Vacuum 2022, 198, 110900. https://doi.org/10.1016/j.vacuum.2022.110900.Search in Google Scholar

38. Zhao, P., Li, W., Wang, G., Yu, B., Li, X., Bai, J., Ren, Z. Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 2014, 604, 87–93. https://doi.org/10.1016/j.jallcom.2014.03.106.Search in Google Scholar

39. Zhou, Y., Ma, R., Candelaria, S. L., Wang, J., Liu, Q., Uchaker, E., Li, P., Chen, Y., Cao, G. Phosphorus/sulfur co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J. Power Sources 2016, 314, 39–48. https://doi.org/10.1016/j.jpowsour.2016.03.009.Search in Google Scholar

40. Panja, T., Bhattacharjya, D., Yu, J.-S. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. J. Mater. Chem. A 2015, 3, 18001–18009. https://doi.org/10.1039/C5TA04169D.Search in Google Scholar

41. Ramakrishnan, P., Shanmugam, S. Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications. J. Power Sources 2016, 316, 60–71. https://doi.org/10.1016/j.jpowsour.2016.03.061.Search in Google Scholar

42. An, B., Xu, S., Li, L., Tao, J., Huang, F., Geng, X. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. J. Mater. Chem. A 2013, 1, 7222–7228. https://doi.org/10.1039/c3ta10830a.Search in Google Scholar

43. Yen, P.-J., Ting, C.-C., Chiu, Y.-C., Tseng, T.-Y., Hsu, Y.-J., Wu, W.-W., Wei, K.-H. Facile production of graphene nanosheets comprising nitrogen-doping through in situ cathodic plasma formation during electrochemical exfoliation. J. Mater. Chem. C 2017, 5, 2597–2602. https://doi.org/10.1039/C6TC03128E.Search in Google Scholar

44. Skudin, V., Andreeva, T., Myachina, M., Gavrilova, N. CVD-synthesis of N-CNT using propane and ammonia. Materials 2022, 15, 1–13. https://doi.org/10.3390/ma15062241.Search in Google Scholar PubMed PubMed Central

45. Taleshi, F. A new strategy for increasing the yield of carbon nanotubes by the CVD method, Fullerenes, Nanotub. Carbon Nanostruct. 2014, 22, 921–927. https://doi.org/10.1080/1536383X.2012.749456.Search in Google Scholar

46. Hao, Y., Qingwen, L., Jin, Z., Zhongfan, L. The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile. Chem. Phys. Lett. 2003, 380, 347–351. https://doi.org/10.1016/j.cplett.2003.09.031.Search in Google Scholar

47. van Dommele, S., Romero-Izquirdo, a., Brydson, R., de Jong, K. P., Bitter, J. H. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 2008, 46, 138–148. https://doi.org/10.1016/j.carbon.2007.10.034.Search in Google Scholar

48. Kundu, S., Nagaiah, T. C., Xia, W., Wang, Y., Van Dommele, S., Bitter, J. H., Santa, M., Grundmeier, G., Bron, M., Schuhmann, W., Muhler, M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 2009, 113, 14302–14310. https://doi.org/10.1021/jp811320d.Search in Google Scholar

49. Mezalira, D. Z., Bron, M. High stability of low Pt loading high surface area electrocatalysts supported on functionalized carbon nanotubes. J. Power Sources 2013, 231, 113–121. https://doi.org/10.1016/j.jpowsour.2012.12.025.Search in Google Scholar

50. Lo, A. Y., Yu, N., Huang, S. J., Te Hung, C., Liu, S. H., Lei, Z., Kuo, C. T., Bin Liu, S. Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diam. Relat. Mater. 2011, 20, 343–350. https://doi.org/10.1016/j.diamond.2011.01.002.Search in Google Scholar

51. Hai-ying, J. I. N., Nai-ci, B., Ling-ling, W., Li-jun, W. Synthesis of nitrogen incorporated carbon nanotubes with different diameters by catalytic. Pyrol. Butylamine 2011, 27, 903–905.Search in Google Scholar

52. Wang, L., Wang, L., Jin, H., Bing, N. Nitrogen-doped carbon nanotubes with variable basicity: preparation and catalytic properties. Catal. Commun. 2011, 15, 78–81. https://doi.org/10.1016/j.catcom.2011.08.013.Search in Google Scholar

53. Balamurugan, J., Pandurangan, A., Thangamuthu, R. Growth of well graphitized MWCNTs over novel 3D cubic bimetallic KIT-6 towards the development of an efficient counter electrode for dye-sensitized solar cells. Org. Electron. 2013, 14, 1833–1843. https://doi.org/10.1016/j.orgel.2013.04.012.Search in Google Scholar

54. Ragavan, R., Pandurangan, A. Facile synthesis and supercapacitor performances of nitrogen doped CNTs grown over mesoporous Fe/SBA-15 catalyst. New J. Chem. 2017, 41, 11591–11599. https://doi.org/10.1039/c7nj00804j.Search in Google Scholar

55. Martín-Jiménez, F. J., Yang, C. M., García-Mateos, F. J., Guerrero-Pérez, M. O., Rodríguez-Mirasol, J., Cordero, T. Exploring the possibilities of carbon materials as catalytic supports for partial oxidation reactions. Catal. Today 2020, 356, 38–48. https://doi.org/10.1016/j.cattod.2020.06.021.Search in Google Scholar

56. Wang, L., Sun, J., Zhang, H., Xu, L., Liu, G. Preparation of benzoxazine-based N-doped mesoporous carbon material and its electrochemical behaviour as supercapacitor. J. Electroanal. Chem. 2020, 868. https://doi.org/10.1016/j.jelechem.2020.114196.Search in Google Scholar

57. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G., Chmelka, B., Stucky, G. Triblock copolymer syntheses of mesoporous silica with periodic 50Å pores. Science 1998, 279(80), 548–552. https://doi.org/10.1126/science.279.5350.548.Search in Google Scholar PubMed

58. Sanjini, N. S., Velmathi, S. Iron impregnated SBA-15, a mild and efficient catalyst for the catalytic hydride transfer reduction of aromatic nitro compounds. RSC Adv. 2014, 4, 15381–15388. https://doi.org/10.1039/c3ra46303f.Search in Google Scholar

59. Goswami, G. K., Nandan, R., Nanda, K. K. Growth of branched carbon nanotubes with doped/un-doped intratubular junctions by one-step co-pyrolysis. Carbon 2013, 56, 97–102. https://doi.org/10.1016/j.carbon.2012.12.079.Search in Google Scholar

60. Atchudan, R., Pandurangan, A., Subramanian, K. Effect of reaction parameters on the growth of MWCNTs using mesoporous Sb/MCM-41 by chemical vapour deposition. Appl. Surf. Sci. 2011, 258, 1045–1051. https://doi.org/10.1016/j.apsusc.2011.08.123.Search in Google Scholar

61. Duraisamy, V., Selvakumar, K., Krishnan, R., Kumar, S. M. S. Investigation on template etching process of SBA-15 derived ordered mesoporous carbon on electrocatalytic oxygen reduction reaction. ChemistrySelect 2019, 4, 2463–2474. https://doi.org/10.1002/slct.201900243.Search in Google Scholar

62. Wang, H., Lu, X., Lu, D., Wang, P., Ma, J. Development of a high-performance polysulfone hybrid ultrafiltration membrane using hydrophilic polymer-functionalized mesoporous SBA-15 as filler. J. Appl. Polym. Sci. 2019, 136, 1–12. https://doi.org/10.1002/app.47353.Search in Google Scholar

63. Shi, X., Ji, S., Wang, K. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over Cr-Ce/SBA-15 catalysts. Catal. Lett. 2008, 125, 331–339. https://doi.org/10.1007/s10562-008-9569-3.Search in Google Scholar

64. Audemar, M., Ciotonea, C., De Oliveira Vigier, K., Royer, S., Ungureanu, A., Dragoi, B., Dumitriu, E., Jérôme, F. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. ChemSusChem 2015, 8, 1885–1891. https://doi.org/10.1002/cssc.201403398.Search in Google Scholar PubMed

65. Chiang, H. L., Wu, T. N., Zeng, L. X. Carbon material formation and residue characteristics of SBA-15 and nickel impregnated SBA-15 as exemplified by acetone decomposition. Microporous Mesoporous Mater. 2019, 279, 286–292. https://doi.org/10.1016/j.micromeso.2018.12.044.Search in Google Scholar

66. Mayani, S. V., Mayani, V. J., Kim, S. W. SBA-15 supported Fe, Ni, Fe–Ni bimetallic catalysts for wet oxidation of bisphenol-A. Bull. Korean Chem. Soc. 2014, 35, 3535–3541. https://doi.org/10.5012/bkcs.2014.35.12.3535.Search in Google Scholar

67. Nguyen, T. T., Le, G. H., Le, C. H., Nguyen, M. B., Quan, T. T. T., Pham, T. T. T., Vu, T. A. Atomic implantation synthesis of Fe-Cu/SBA-15 nanocomposite as a heterogeneous fenton-like catalyst for enhanced degradation of DDT. Mater. Res. Express 2018, 5, 1–10. https://doi.org/10.1088/2053-1591/aadce1.Search in Google Scholar

68. Cornu, C., Bonardet, J. L., Casale, S., Davidson, A., Abramson, S., André, G., Porcher, F., Grčić, I., Tomasic, V., Vujevic, D., Koprivanac, N. Identification and location of iron species in Fe/SBA-15 catalysts: interest for catalytic fenton reactions. J. Phys. Chem. C 2012, 116, 3437–3448. https://doi.org/10.1021/jp2038625.Search in Google Scholar

69. Li, Y., Wang, J., Li, X., Liu, J., Geng, D., Yang, J., Li, R., Sun, X. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem. Commun. 2011, 13, 668–672. https://doi.org/10.1016/j.elecom.2011.04.004.Search in Google Scholar

70. Chen, L., Cui, X., Wang, Y., Wang, M., Cui, F., Wei, C., Huang, W., Hua, Z., Zhang, L., Shi, J. One-step hydrothermal synthesis of nitrogen-doped carbon nanotubes as an efficient electrocatalyst for oxygen reduction reactions. Chem. Asian J. 2014, 9, 2915–2920. https://doi.org/10.1002/asia.201402334.Search in Google Scholar PubMed

71. Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C. W., Mazurkiewicz, M., Malolepszy, A., Stobinski, L., Wågberg, T. Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 2012, 50, 3535–3541. https://doi.org/10.1016/j.carbon.2012.03.022.Search in Google Scholar

72. Bulusheva, L. G., Okotrub, a. V., Kinloch, I. a., Asanov, I. P., Kurenya, a. G., Kudashov, a. G., Chen, X., Song, H. Effect of nitrogen doping on raman spectra of multi-walled carbon nanotubes. Phys. Status Solidi Basic Res. 2008, 245, 1971–1974. https://doi.org/10.1002/pssb.200879592.Search in Google Scholar

73. Xiong, C., Wei, Z., Hu, B., Chen, S., Li, L., Guo, L., Ding, W., Liu, X., Ji, W., Wang, X. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. J. Power Sources 2012, 215, 216–220. https://doi.org/10.1016/j.jpowsour.2012.04.057.Search in Google Scholar

74. Kim, C., Lee, H.-R., Kim, H. T. Effect of NH3 gas ratio on the formation of nitrogen-doped carbon nanotubes using thermal chemical vapor deposition. Mater. Chem. Phys. 2016, 183, 8–12. https://doi.org/10.1016/j.matchemphys.2016.08.033.Search in Google Scholar

75. Faba, L., Criado, Y. A., Gallegos-Suárez, E., Pérez-Cadenas, M., Díaz, E., Rodríguez-Ramos, I., Guerrero-Ruiz, A., Ordóñez, S. Preparation of nitrogen-containing carbon nanotubes and study of their performance as basic catalysts. Appl. Catal. A Gen. 2013, 458, 155–161. https://doi.org/10.1016/j.apcata.2013.03.041.Search in Google Scholar

76. Misra, A., Tyagi, P. K., Rai, P., Misra, D. S. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping. J. Nanosci. Nanotechnol. 2007, 7, 1820–1823. https://doi.org/10.1166/jnn.2007.723.Search in Google Scholar PubMed

77. Lin, X., Lu, X., Huang, T., Liu, Z., Yu, A. Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries. J. Power Sources 2013, 242, 855–859. https://doi.org/10.1016/j.jpowsour.2013.05.100.Search in Google Scholar

78. Tan, Y., Xu, C., Chen, G., Liu, Z., Ma, M., Xie, Q., Zheng, N., Yao, S. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 2241–2248. https://doi.org/10.1021/am400001g.Search in Google Scholar PubMed

79. Lu, W., Liu, M., Miao, L., Zhu, D., Wang, X., Duan, H., Wang, Z., Li, L., Xu, Z., Gan, L., Chen, L. Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim. Acta 2016, 205, 132–141. https://doi.org/10.1016/j.electacta.2016.04.114.Search in Google Scholar

80. Wang, D., Min, Y., Yu, Y., Peng, B. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 2014, 417, 270–277. https://doi.org/10.1016/j.jcis.2013.11.021.Search in Google Scholar PubMed

81. Sivaprakash, P., Kumar, K. A., Muthukumaran, S., Pandurangan, A., Dixit, A., Arumugam, S. NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

82. Padmanaban, A., Padmanathan, N., Dhanasekaran, T., Manigandan, R., Srinandhini, S., Sivaprakash, P., Arumugam, S., Narayanan, V. Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. J. Electroanal. Chem. 2020, 877, 114658; https://doi.org/10.1016/j.jelechem.2020.114658.Search in Google Scholar

83. Velmurugan, G., Raman, R. G., Prakash, D., Kim, I., Sahadevan, J., Sivaprakash, P. Influence of Ni and Sn Perovskite NiSn(OH)6 nanoparticles on energy storage applications. Nanomaterials 2023, 13, 1523; https://doi.org/10.3390/nano13091523.Search in Google Scholar PubMed PubMed Central

84. Sivaprakash, P., Kumar, K. A., Subalakshmi, K., Bathula, C., Sandhu, S., Arumugam, S. Fabrication of high-performance asymmetric supercapacitors with high energy and power density based on binary metal fluoride. Mater. Lett. 2020, 275, 128146; https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0458).


Received: 2023-11-07
Accepted: 2024-01-16
Published Online: 2024-02-15

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2023-0458/html
Scroll to top button