Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter (O) January 2, 2024

Metal-based nanoparticles: basics, types, fabrications and their electronic applications

  • Shoaib Nazir , Jian-Min Zhang EMAIL logo , Muhammad Junaid , Shahroz Saleem , Asjad Ali , Arif Ullah and Shahab Khan

Abstract

Nanoparticles below 100 nm have sparked immense interest for their unique physical and chemical properties, separate from bulk materials. These particles have versatile applications in electronics, magnetism, optoelectronics, and electricity. This article overviews ongoing research on nanoparticle-based electronic devices and explores anticipated advancements. In electronics, nanoparticles are essential components for enhanced performance and functionality, promising breakthroughs in computing, telecommunications, and sensing. This work explores the groundbreaking potential of metal-based nanoparticles, such as ZnO NPs, Cu NPs, Al NPs, and Fe NPs, in various electronic device applications. It investigates different synthetic methods, including bottom–up, sol–gel, co-precipitation, hydrothermal, CVD, and green/biological method to enhance the effectiveness of these nanoparticles. The study briefly examines the efficiency of these nanoparticles for electronic device applications, and it extends their potential applications to areas such as data storage, sensors, protective coatings, energy storage, chemical industries, water treatment, fertilizers, and defense. Challenges include precise control of nanoparticle shape and arrangement, which researchers address to design new materials with controlled properties. The present work discusses the anticipated and emerging applications of nanoparticles, emphasizing their unique physical and chemical properties compared to bulk materials. Ongoing research explores their full potential, while manipulation techniques open doors to novel materials. The progress made underscores the immense possibilities of nanoparticle-based electronics.


Corresponding author: Jian-Min Zhang, College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, Shaanxi, P.R. China, E-mail:

Award Identifier / Grant number: SYJS202217

Acknowledgments

The authors would like to acknowledge the Fundamental Research Funds for the Central Universities (Grant No. SYJS202217) for providing financial support for this research.

  1. Research ethics: Not applicable.

  2. Author contributions: SN Conceptualization, writing—original draft preparation, formal analysis. J-MZ Supervision, Writing review & Editing, Investigation. MJ: Mathematical calculations. SS Methodology, Validation. AA Software. AU Data Curation. SK: Visualization. The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author(s) state(s) no conflict of interest.

  4. Research funding: Fundamental Research Funds for the Central Universities (Grant No. SYJS202217).

  5. Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Altammar, K. A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front. Microbiol. 2023, 14, 1155622; https://doi.org/10.3389/fmicb.2023.1155622.Search in Google Scholar PubMed PubMed Central

2. Wolde, A. Nanotechnology: Towards a Molecular Construction Kit; STT Publication: Den Haag, the Netherlands, 1998.Search in Google Scholar

3. Heath, J. R. Nanoscale Materials. Acc. Chem. Res. 1999, 32, 388; https://doi.org/10.1021/ar990059e.Search in Google Scholar

4. Markovich, G., Collier, C. P., Henrichs, S. E., Remacle, F., Levine, R. D., Heath, J. R. Architectonic Quantum Dot Solids. Acc. Chem. Res. 1999, 32, 415–423; https://doi.org/10.1021/ar980039x.Search in Google Scholar

5. Nirmal, M., Brus, L. Luminescence Photophysics in Semiconductor Nanocrystals. Acc. Chem. Res. 1999, 32, 407–414; https://doi.org/10.1021/ar9700320.Search in Google Scholar

6. Yousaf, M., Nazir, S., Akbar, M., Akhtar, M. N., Noor, A., Hu, E., Shah, M. A. K. Y., Lu, Y. Structural, Magnetic, and Electrical Evaluations of Rare Earth Gd3+ Doped in Mixed Co–Mn Spinel Ferrite Nanoparticles. Ceram. Int. 2022, 48(1), 578–586. [online]; https://doi.org/10.1016/j.ceramint.2021.09.136.Search in Google Scholar

7. Yousaf, M., Nazir, S., Hayat, Q., Akhtar, M. N., Akbar, M., Lu, Y., Noor, A., Zhang, J.-M., Shah, M. A. K. Y., Wang, B. Magneto-Optical Properties and Physical Characteristics of M-type Hexagonal Ferrite (Ba1−xCaxFe11.4Al0.6O19) Nanoparticles (NPs). Ceram. Int. 2021, 47(8), 11668–11676. [online]; https://doi.org/10.1016/j.ceramint.2021.01.006.Search in Google Scholar

8. Roco, M. C., Williams, R. S., Alivisatos, P. Nanotechnology Research Directions: IWGN Workshop Report – Vision for Nanotechnology in the Next Decade; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000.10.1007/978-94-015-9576-6Search in Google Scholar

9. Hahn, H. Gas Phase Synthesis of Nanocrystalline Materials. Nanostrucured Mater. 1997, 9, 3–12; https://doi.org/10.1016/s0965-9773(97)00013-5.Search in Google Scholar

10. Kruis, F. E., Fissan, H., Peled, A. Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications – A Review. J. Aerosol Sci. 1998, 29, 511–535; https://doi.org/10.1016/s0021-8502(97)10032-5.Search in Google Scholar

11. Swihart, M. T. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin Colloid Interf. Sci. 2003, 8, 127–133; https://doi.org/10.1016/s1359-0294(03)00007-4.Search in Google Scholar

12. Grieve, K., Mulvaney, P., Grieser, F. Synthesis and Electronic Properties of Semiconductor Nanoparticles/Quantum Dots. Curr. Opin. Colloid Interf. Sci. 2000, 5, 168–172; https://doi.org/10.1016/s1359-0294(00)00050-9.Search in Google Scholar

13. Trindade, T., O’Brien, P., Pickett, N. L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. Chem. Mater. 2001, 13, 3843–3858; https://doi.org/10.1021/cm000843p.Search in Google Scholar

14. Murray, C. B., Kagan, C. R., Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystal and Close-Packed Nanocrystal Assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610; https://doi.org/10.1146/annurev.matsci.30.1.545.Search in Google Scholar

15. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019, 25, 112; https://doi.org/10.3390/molecules25010112.Search in Google Scholar PubMed PubMed Central

16. Kokarneswaran, M., Selvaraj, P., Ashokan, T., Perumal, S., Sellappan, P., Murugan, K. D., Ramalingam, S., Mohan, N., Chandrasekaran, V. Discovery of Carbon Nanotubes in Sixth Century BC Potteries from Keeladi, India. Sci. Rep. 2020, 10, 1–6; https://doi.org/10.1038/s41598-020-76720-z.Search in Google Scholar PubMed PubMed Central

17. Martin, J. I., Nogues, J., Liu, K., Vicent, J. L., Schuller, I. K. Ordered Magnetic Nanostructures: Fabrication and Properties. J. Mag. Mag. Mat. 2003, 256, 449–501; https://doi.org/10.1002/chin.200325214.Search in Google Scholar

18. Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989–1992; https://doi.org/10.1126/science.287.5460.1989.Search in Google Scholar PubMed

19. Sun, S., Fullerton, E. E., Weller, D., Murray, C. B. Compositionally Controlled FePt Nanoparticle Materials. IEEE Trans. Magn. 2001, 37, 1239–1243; https://doi.org/10.1109/20.950807.Search in Google Scholar

20. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 273; https://doi.org/10.1021/ja0380852.Search in Google Scholar PubMed

21. Zeng, H., Li, J., Liu, J. P., Wang, Z. L., Sun, S. Exchange-Coupled Nanocomposite Magnets by Nanoparticle Self-Assembly. Nature 2002, 420, 395–398; https://doi.org/10.1038/nature01208.Search in Google Scholar PubMed

22. Zeng, H., Li, J., Wang, Z. L., Liu, J. P., Sun, S. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Lett. 2004, 4, 187–190; https://doi.org/10.1021/nl035004r.Search in Google Scholar

23. Yang, X. M., Liu, C., Ahner, J., Yu, J., Klemmer, T., Johns, E., Weller, D. Fabrication of FePt Nanoparticles for Self-Organized Magnetic Array. J. Vac. Sci. Technol. B 2004, 22, 31–34; https://doi.org/10.1116/1.1633283.Search in Google Scholar

24. Sudfeld, D., Wojczykowski, K., Hachmann, W., Jutzi, P., Reiss, G., Hütten, A. Tailoring Magnetic Nanocrystal Superlattices by Chemical Engineering. J. Appl. Phys. 2003, 93, 7328–7330; https://doi.org/10.1063/1.1558235.Search in Google Scholar

25. Zhou, W. L., Carpenter, E. E., Lin, J., Kumbhar, A., Sims, J., O’Connor, C. J. Nanostructures of Gold Coated Iron Core–Shell Nanoparticles and the Nanobands Assembled Under Magnetic Field. Eur. Phys. J. D 2001, 16, 289–292; https://doi.org/10.1007/s100530170112.Search in Google Scholar

26. Zhang, Y., Wan, J., Skumryev, V., Stoyanov, S., Huang, Y., Hadjipanayis, G. C., Weller, D. Microstructural Characterization of L10 FePt/MgO Nanoparticles with Perpendicular Anisotropy. Appl. Phys. Lett. 2004, 85, 5343–5345; https://doi.org/10.1063/1.1827348.Search in Google Scholar

27. Simon, U. Charge Transport in Nanoparticle Arrangements. Adv. Mater. 1998, 10, 1487–1492; https://doi.org/10.1002/(sici)1521-4095(199812)10:17<1487::aid-adma1487>3.3.co;2-n.10.1002/(SICI)1521-4095(199812)10:17<1487::AID-ADMA1487>3.0.CO;2-WSearch in Google Scholar

28. Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P., Reifenberger, R. Room-Temperature Coulomb Blockade from a Self-Assembled Molecular Nanostructure. Phys. Rev. B; Condens. Matter. Mater. Phys. 1995, 52, 9071–9077; https://doi.org/10.1103/physrevb.52.9071.Search in Google Scholar

29. Andres, R. P., Bein, T., Dorogi, M., Feng, S., Henderson, J. I., Kubiak, C. P., Mahoney, W., Osifchin, R. G., Reifenberger, R. ‘Coulomb staircase’ at Room Temperature in a Self-Assembled Molecular Nanostructure. Science 1996, 272, 1323–1325; https://doi.org/10.1126/science.272.5266.1323.Search in Google Scholar

30. Petta, J. R., Salinas, D., Ralph, D. C. Measurements of Discrete Electronic States in a Gold Nanoparticle Using Tunnel Junctions Formed from Self-Assembled Monolayers. Appl. Phys. Lett. 2000, 77, 4419–4421; https://doi.org/10.1063/1.1333396.Search in Google Scholar

31. Yano, K., Ishii, T., Hashimoto, T., Murai, F., Seki, K. Room-Temperature Single-Electron Memory. IEEE Trans. Electron. Dev. 1994, 41, 1628–1638; https://doi.org/10.1109/16.310117.Search in Google Scholar

32. Sato, T., Ahmed, H., Brown, D., Johnson, B. F. G. Single Electron Transistor using a Molecularly Linked Gold Colloidal Particle Chain. J. Appl. Phys. 1997, 82, 696–701; https://doi.org/10.1063/1.365600.Search in Google Scholar

33. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., McEuen, P. L. A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal. Nature 1997, 389, 699–701; https://doi.org/10.1038/39535.Search in Google Scholar

34. Stone, N. J., Ahmed, H. Silicon Single Electron Memory Cell. Appl. Phys. Lett. 1998, 73, 2134–2136; https://doi.org/10.1063/1.122401.Search in Google Scholar

35. Yano, K., Ishii, T., Sano, T., Mine, T., Murai, F., Hashimoto, T., Kobayashi, T., Kure, T., Seki, K. Single-Electron Memory for Giga-To-Terabit Storage. Proc. IEEE 1999, 87, 633–651; https://doi.org/10.1109/5.752519.Search in Google Scholar

36. Junno, T., Magnusson, M. H., Carlsson, S. B., Deppert, K., Malm, J. O., Montelius, L., Samuelson, L. Single-Electron Devices via Controlled Assembly of Designed Nanoparticles. Microelectron. Eng. 1999, 47, 179–183; https://doi.org/10.1016/s0167-9317(99)00184-7.Search in Google Scholar

37. Tiwari, S., Wahl, J. A., Silva, H., Rana, F., Welser, J. J. Small Silicon Memories: Confinement, Single-Electron and Interface State Considerations. Appl. Phys. A 2000, 71, 403–414; https://doi.org/10.1007/s003390000553.Search in Google Scholar

38. Lent, C. S., Tougaw, P. D. Dynamics of Quantum Cellular Automata. J. Appl. Phys. 1996, 80, 4722–4736; https://doi.org/10.1063/1.363455.Search in Google Scholar

39. Cowburn, R. P., Welland, M. E. Room Temperature Magnetic Quantum Cellular Automata. Science 2000, 287, 1466–1468; https://doi.org/10.1126/science.287.5457.1466.Search in Google Scholar PubMed

40. Inomata, K., Saito, Y., Nakajima, K., Sagoi, M. Double Tunnel Junctions for Magnetic Random Access Memory Devices. J. Appl. Phys. 2000, 87, 6064–6066; https://doi.org/10.1063/1.372613.Search in Google Scholar

41. Black, C. T., Murray, C. B., Sandstrom, R. L., Sun, S. Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices. Science 2000, 290, 131–1134; https://doi.org/10.1126/science.290.5494.1131.Search in Google Scholar PubMed

42. Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M., Gamelin, D. R. Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co and Ni-Doped ZnO Nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218; https://doi.org/10.1021/ja036811v.Search in Google Scholar PubMed

43. Schwartz, D. A., Kittilstved, K. R., Gamelin, D. R. Above-Room-Temperature Ferromagnetic Ni2+-Doped ZnO Thin Films Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots. Appl. Phys. Lett. 2004, 85, 1395–1397; https://doi.org/10.1063/1.1785872.Search in Google Scholar

44. Sakaguchi, T., Hong, Y.-G., Kobayashi, M., Takata, M., Choi, H., Shim, J.-C., Kurino, H., Koyanagi, M. Proposal of New Non-Volatile Memory with Magnetic Nano-Dots. Jpn. J. Appl. Phys. 2004, 43, 2203–2206; https://doi.org/10.1143/jjap.43.2203.Search in Google Scholar

45. Goll, D., Berkowitz, A. E., Bertram, H. N. Critical Sizes for Ferromagnetic Spherical Hollow Nanoparticles. Phys. Rev. B; Condens. Matter. Mater. Phys. 2004, 70, 184432–184441; https://doi.org/10.1103/physrevb.70.184432.Search in Google Scholar

46. Liu, C., Zou, B., Rondinone, A. J., Zhang, Z. J. Sol–Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles. J. Am. Chem. Soc. 2001, 123, 4344–4345; https://doi.org/10.1021/ja001893y.Search in Google Scholar PubMed

47. Seol, K. S., Takeuchi, K., Ohki, Y. Ferroelectricity of Single-Crystalline, Monodisperse Lead Zirconate Titanate Nanoparticles of 9 nm in Diameter. Appl. Phys. Lett. 2004, 85, 2325–2327; https://doi.org/10.1063/1.1794355.Search in Google Scholar

48. O’Brien, S., Brus, L., Murray, C. B. Synthesis of Monodisperse Nanoparticles of Barium Titanate: Toward a Generalized Strategy of Oxide Nanoparticle Synthesis. J. Am. Chem. Soc. 2001, 123, 12085–12086; https://doi.org/10.1021/ja011414a.Search in Google Scholar PubMed

49. Kumar, S. S., Venkateswarlu, P., Rao, V. R., Rao, G. N. Synthesis, Characterization and Optical Properties of Zinc Oxide Nanoparticles. Int. Nano Lett. 2013, 3, 1–6; https://doi.org/10.1186/2228-5326-3-30.Search in Google Scholar

50. Chen, J.-C., Tang, C.-T. Preparation and Application of Granular ZnO/Al2O3 Catalyst for the Removal of Hazardous Trichloroethylene. J. Hazardous Mater. 2007, 142, 88–96; https://doi.org/10.1016/j.jhazmat.2006.07.061.Search in Google Scholar PubMed

51. Madathil, A. N. P., Vanaja, K., Jayaraj, M. Synthesis of ZnO Nanoparticles by Hydrothermal Method. In Nanophotonic Materials IV; Gaburro, Z., Cabrini, S., Eds. SPIE: Bellingham, WA, 2007; pp. 47–55.Search in Google Scholar

52. Moghaddam, A. B., Nazari, T., Badraghi, J., Kazemzad, M. Synthesis of ZnO Nanoparticles and Electrodeposition of polypyrrole/ZnO Nanocomposite Film. Int. J. Electrochem. Sci. 2009, 4, 247–257.Search in Google Scholar

53. Ghorbani, H. R., Mehr, F. P., Pazoki, H., Rahmani, B. M. Synthesis of ZnO Nanoparticles by Precipitation Method. Orient. J. Chem. 2015, 31, 1219–1221; https://doi.org/10.13005/ojc/310281.Search in Google Scholar

54. Khan, I., Saeed, K., Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931; https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar

55. Siwach, O. P., Sen, P. Synthesis and Study of Fluorescence Properties of Cu Nanoparticles. J. Nanopart. Res. 2008, 10, 107–114; https://doi.org/10.1007/s11051-008-9372-5.Search in Google Scholar

56. Lerner, M. I., Glazkova, E. A., Lozhkomoev, A. S., Svarovskaya, N. V., Bakina, O. V., Pervikov, A. V., Psakhie, S. G. Synthesis of Al Nanoparticles and Al/AlN Composite Nanoparticles by Electrical Explosion of Aluminum Wires in Argon and Nitrogen. Powder Technol. 2016, 295, 307–314; https://doi.org/10.1016/j.powtec.2016.04.005.Search in Google Scholar

57. Zhuang, J., Gentry, R. W. Environmental Application and Risks of Nanotechnology: A Balanced View. In Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats around Us; Ripp, S., Henry, T., Eds. ACS Publications: Washington, DC, 2011; pp. 41–67.10.1021/bk-2011-1079.ch003Search in Google Scholar

58. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., Kalaskar, M. G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174; https://doi.org/10.1016/j.jddst.2019.101174.Search in Google Scholar

59. Farrell, D., Majetich, S. A., Wilcoxon, J. P. Preparation and Characterization of Monodisperse Fe Nanoparticles. J. Phys. Chem. B 2003, 107, 11022–11030; https://doi.org/10.1021/jp0351831.Search in Google Scholar

60. Sugihartono, I., Dianisya, D., Isnaeni, I. Crystal Structure Analyses of ZnO Nanoparticles Growth by Simple Wet Chemical Method. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, 2018; 012077.10.1088/1757-899X/434/1/012077Search in Google Scholar

61. Wang, Z., Li, H., Tang, F., Ma, J., Zhou, X. A Facile Approach for the Preparation of Nano-Size Zinc Oxide in Water/glycerol with Extremely Concentrated Zinc Sources. Nanosc. Res. Lett. 2018, 13, 1–9; https://doi.org/10.1186/s11671-018-2616-0.Search in Google Scholar PubMed PubMed Central

62. Stepanov, A. L., Nuzhdin, V. I., Valeev, V. F., Kreibig, U. Optical Properties of Metal Nanoparticles. In Proceedings of the ICONO 2010: International Conference on Coherent and Nonlinear Optics; SPIE: Bellingham, WA, 2011; pp. 543–552.10.1117/12.881137Search in Google Scholar

63. Siddiqi, K. S., Husen, A. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles. Nanosc. Res. Lett. 2016, 11, 1–13; https://doi.org/10.1186/s11671-016-1695-z.Search in Google Scholar PubMed PubMed Central

64. Mott, D., Galkowski, J., Wang, L., Luo, J., Zhong, C.-J. Synthesis of Size-Controlled and Shaped Copper Nanoparticles. Langmuir 2007, 23, 5740–5745; https://doi.org/10.1021/la0635092.Search in Google Scholar PubMed

65. Ndolomingo, M. J., Meijboom, R. Determination of the Surface Area and Sizes of Supported Copper Nanoparticles through Organothiol Adsorption – Chemisorption. Appl. Surf. Sci. 2016, 390, 224–235; https://doi.org/10.1016/j.apsusc.2016.08.080.Search in Google Scholar

66. Saw, M. J., Ghosh, B., Nguyen, M. T., Jirasattayaporn, K., Kheawhom, S., Shirahata, N., Yonezawa, T. High Aspect Ratio and Post-processing Free Silver Nanowires as Top Electrodes for Inverted-Structured Photodiodes. ACS Omega 2019, 4, 13303–13308; https://doi.org/10.1021/acsomega.9b01479.Search in Google Scholar PubMed PubMed Central

67. Hortin, J., Anderson, A., Britt, D., Jacobson, A., Mclean, J. Copper Oxide Nanoparticle Dissolution at Alkaline pH Is Controlled by Dissolved Organic Matter: Influence of Soil-Derived Organic Matter, Wheat, Bacteria, and Nanoparticle Coating. Environ. Sci. 2020, 7, 2618–2631; https://doi.org/10.1039/d0en00574f.Search in Google Scholar

68. Önal, E. S., Yatkın, T., Aslanov, T., Ergüt, M., Özer, A. Biosynthesis and Characterization of Iron Nanoparticles for Effective Adsorption of Cr (VI). Int. J. Chem. Eng. 2019, 2019, 2716423.10.1155/2019/2716423Search in Google Scholar

69. Tavakoli, A. H., Maram, P. S., Widgeon, S. J., Rufner, J., Van Benthem, K., Ushakov, S., Sen, S., Navrotsky, A. Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability. J. Phys. Chem. C 2013, 117, 17123–17130; https://doi.org/10.1021/jp405820g.Search in Google Scholar

70. Essajai, R., Benhouria, Y., Rachadi, A., Qjani, M., Mzerd, A., Hassanain, N. Shape-dependent Structural and Magnetic Properties of Fe Nanoparticles Studied through Simulation Methods. RSC Adv. 2019, 9, 22057–22063; https://doi.org/10.1039/c9ra03047f.Search in Google Scholar PubMed PubMed Central

71. Nazir, S., Zhang, J.-M., Abbas, N., Akhtar, M. N., Saleem, S., Qadir, K., Nkwazema, O. C., Nauman, M., Solre, G. F. B. Improvements in the Physicochemical and Electrical Characteristics of BaO Nanoparticles by Cu Doping for Electronic Device Applications. Mater. Express 2023, 13(10), 1645–1659; https://doi.org/10.1166/mex.2023.2508.Search in Google Scholar

72. Das, S., Srivasatava, V. C. Synthesis and Characterization of ZnO–MgO Nanocomposite by Co-Precipitation Method. Smart Sci. 2016, 4, 190–195; https://doi.org/10.1080/23080477.2016.1260425.Search in Google Scholar

73. Nazir, S., Zhang, J., Akhtar, M. N., Abbas, N., Saleem, S., Nauman, M., Ali, A. Modification of Physicochemical and Electrical Characteristics of Lead Sulfide (PbS) Nanoparticles (NPs) by Manganese (Mn) Doping for Electronic Device and Applications. J. Sol-Gel Sci. Technol. 2023, 108, 778–790; https://doi.org/10.1007/s10971-023-06176-w.Search in Google Scholar

74. Nazir, S., Junaid, M., Zhang, J.-M., Abbas, N., Solre, G. F. B., Liu, Y. A Comparative Study on the Effect of Different Sintering Temperatures on Structural and Magnetic Properties of Mg–Zn Ferrite Nanoparticles. J. Nanoelectron. Optoelectron. 2023, 18(5), 572–581; https://doi.org/10.1166/jno.2023.3428.Search in Google Scholar

75. Banerjee, A., Krishna, R., Das, B. Size Controlled Deposition of Cu and Si Nano-Clusters by an Ultra-high Vacuum Sputtering Gas Aggregation Technique. Appl. Phys. A 2008, 90, 299–303; https://doi.org/10.1007/s00339-007-4271-7.Search in Google Scholar

76. Dikusar, A., Globa, P., Belevskii, S., Sidel’nikova, S. On Limiting Rate of Dimensional Electrodeposition at Meso- And Nanomaterial Manufacturing by Template Synthesis. Surf. Eng. Appl. Electrochem. 2009, 45, 171–179; https://doi.org/10.3103/s1068375509030016.Search in Google Scholar

77. Ago, H. CVD Growth of High-Quality Single-Layer Graphene. In Frontiers of Graphene and Carbon Nanotubes; Matsumoto, K., Ed.; Springer: Berlin, 2015; pp. 3–20.10.1007/978-4-431-55372-4_1Search in Google Scholar

78. Machac, P., Cichon, S., Lapcak, L., Fekete, L. Graphene Prepared by Chemical Vapour Deposition Process. Graph. Technol. 2020, 5, 9–17; https://doi.org/10.1007/s41127-019-00029-6.Search in Google Scholar

79. Kumari, S. C., Dhand, V., Padma, P. N. Green Synthesis of Metallic Nanoparticles: A Review. Nanomaterials 2021, 2021, 259–281; https://doi.org/10.1016/b978-0-12-822401-4.00022-2.Search in Google Scholar

80. Malhotra, S. P. K., Alghuthaymi, M. A. Biomolecule-Assisted Biogenic Synthesis of Metallic Nanoparticles. Agri-Waste Microb. Product. Sust. Nanomater. 2022, 2022, 139–163.10.1016/B978-0-12-823575-1.00011-1Search in Google Scholar

81. Park, C. Y., Choi, B. Enhanced Light Extraction from Bottom Emission Oleds by High Refractive Index Nanoparticle Scattering Layer. Nanomaterials 2019, 9, 1241; https://doi.org/10.3390/nano9091241.Search in Google Scholar PubMed PubMed Central

82. Bahadur, P. S., Jaiswal, S., Srivastava, R., Kumar, A. Advanced Application of Nanotechnology in Engineering. In Proceedings of the 2021 International Conference on Technological Advancements and Innovations (ICTAI); IEEE: Piscataway, NJ, 2021; pp. 92–95.10.1109/ICTAI53825.2021.9673329Search in Google Scholar

83. Triana, M. A., Hsiang, E.-L., Zhang, C., Dong, Y., Wu, S.-T. Luminescent Nanomaterials for Energy-Efficient Display and Healthcare. ACS Energy Lett. 2022, 7, 1001–1020; https://doi.org/10.1021/acsenergylett.1c02745.Search in Google Scholar

84. Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., Pandey, A. C. Biological Approach of Zinc Oxide Nanoparticles Formation and its Characterization. Adv. Mater. Lett. 2011, 2, 313–317; https://doi.org/10.5185/amlett.indias.204.Search in Google Scholar

85. Ahmad, A., Alsaad, A., Al-Bataineh, Q. M., Al-Akhras, M.-A. H., Albataineh, Z., Alizzy, K. A., Daoud, N. S. Synthesis and Characterization of ZnO NPs-Doped PMMA-BDK-MR Polymer-Coated Thin Films with UV Curing for Optical Data Storage Applications. Polymer Bull. 2021, 78, 1189–1211; https://doi.org/10.1007/s00289-020-03155-x.Search in Google Scholar

86. Salem, S. S., Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Element Res. 2021, 199, 344–370; https://doi.org/10.1007/s12011-020-02138-3.Search in Google Scholar PubMed

87. Bhavani, K. S., Anusha, T., Brahman, P. K. Platinum Nanoparticles Decorated on Graphitic Carbon Nitride-ZIF-67 Composite Support: An Electrocatalyst for the Oxidation of Butanol in Fuel Cell Applications. Int. J. Hydr. Energy 2021, 46, 9199–9214; https://doi.org/10.1016/j.ijhydene.2021.01.006.Search in Google Scholar

88. Lara, P., Philippot, K. The Hydrogenation of Nitroarenes Mediated by Platinum Nanoparticles: An Overview. Catal. Sci. Technol. 2014, 4, 2445–2465; https://doi.org/10.1039/c4cy00111g.Search in Google Scholar

89. Jiang, H.-L., Xu, Q. Catalytic Hydrolysis of Ammonia Borane for Chemical Hydrogen Storage. Catal. Today 2011, 170, 56–63; https://doi.org/10.1016/j.cattod.2010.09.019.Search in Google Scholar

90. Pérez-Lorenzo, M. Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions. J. Phys. Chem. Lett. 2012, 3, 167–174; https://doi.org/10.1021/jz2013984.Search in Google Scholar

91. Pradeep, T. Noble Metal Nanoparticles for Water Purification: A Critical Review. Thin Solid Films 2009, 517, 6441–6478; https://doi.org/10.1016/j.tsf.2009.03.195.Search in Google Scholar

92. Siddique, S., Chow, J. C. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020, 10, 3824; https://doi.org/10.3390/app10113824.Search in Google Scholar

93. Schröfel, A., Kratošová, G., Šafa¯rík, I., Šafa¯ríková, M., Raška, I., Shor, L. M. Applications of Biosynthesized Metallic Nanoparticles – A Review. Acta Biomater. 2014, 10, 4023–4042; https://doi.org/10.1016/j.actbio.2014.05.022.Search in Google Scholar PubMed

94. Zheng, Z., Zhang, X., Carbo, D., Clark, C., Nathan, C.-A., Lvov, Y. Sonication-assisted Synthesis of Polyelectrolyte-Coated Curcumin Nanoparticles. Langmuir 2010, 26, 7679–7681; https://doi.org/10.1021/la101246a.Search in Google Scholar PubMed PubMed Central

95. Rangel-Olivares, F. R., Arce-Estrada, E. M., Cabrera-Sierra, R. Synthesis and Characterization of Polyaniline-Based Polymer Nanocomposites as Anti-corrosion Coatings. Coatings 2021, 11, 653; https://doi.org/10.3390/coatings11060653.Search in Google Scholar

96. Ye, Q., Chen, W., Huang, H., Tang, Y., Wang, W., Meng, F., Wang, H., Zheng, Y. Iron and Zinc Ions, Potent Weapons against Multidrug-Resistant Bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 5213–5227; https://doi.org/10.1007/s00253-020-10600-4.Search in Google Scholar PubMed

97. Nazir, S., Ali, A., Aftab, A., Muqeet, H. A., Mirsaeidi, S., Zhang, J.-M. Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review. Energies 2023, 16(13), 4959; https://doi.org/10.3390/en16134959.Search in Google Scholar

98. Kopittke, P. M., Lombi, E., Wang, P., Schjoerring, J. K., Husted, S. Nanomaterials as Fertilizers for Improving Plant Mineral Nutrition and Environmental Outcomes. Environ. Sci. 2019, 6, 3513–3524; https://doi.org/10.3390/biology10111123.Search in Google Scholar PubMed PubMed Central

99. Jaskulski, D., Jaskulska, I., Majewska, J., Radziemska, M., Bilgin, A., Brtnicky, M. Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. Materials 2022, 15, 870; https://doi.org/10.3390/ma15030870.Search in Google Scholar PubMed PubMed Central

100. Song, U., Kim, J. Zinc Oxide Nanoparticles: A Potential Micronutrient Fertilizer for Horticultural Crops with Little Toxicity. Horticult. Environ. Biotechnol. 2020, 61, 625–631; https://doi.org/10.1007/s13580-020-00244-8.Search in Google Scholar

101. Dangi, K., Verma, A. K. Efficient & Eco-Friendly Smart Nano-Pesticides: Emerging Prospects for Agriculture. Mater. Today Proc. 2021, 45, 3819–3824; https://doi.org/10.1016/j.matpr.2021.03.211.Search in Google Scholar

102. Yadav, R., Dwivedi, S., Kumar, S., Chaudhury, A. Trends and Perspectives of Biosensors for Food and Environmental Virology. Food Environ. Virol. 2010, 2, 53–63; https://doi.org/10.1007/s12560-010-9034-5.Search in Google Scholar

Received: 2023-10-05
Accepted: 2023-12-20
Published Online: 2024-01-02

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2023-0375/html
Scroll to top button