Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 2, 2022

The role of different inorganic anions on passive film durability for nickel against chloride ions pitting corrosion in borate buffered solution

  • Mohsen M. Al-Qhatani and Mohamed A. Deyab EMAIL logo

Abstract

Potentiodynamic and cyclic voltammetric studies were carried out on nickel in borate buffered saline (pH = 8.49). The anodic excursion spans of nickel in borate buffer solution do not involve active/passive transition. The passive film starts to break down in the presence of Cl-ions, which causes pitting damage. The data reveal that the increasing Cl concentration and solution temperature shifts the Epit to the active direction while the increasing in scan rate shifts the Epit to the positive direction. The pitting potential (Epit) shifted in a positive direction when increasing concentrations of Wo4−2 and MoO4−2 anions were added to a borate buffer solution containing Cl ions, showing that the additional anions had an inhibitory influence on the pitting corrosion. While the NO3 anion is ineffectual as an inhibitor and rather speeds up pitting corrosion, the NO2 anion has a slight inhibitory impact on pitting corrosion.


Corresponding author: Mohamed A. Deyab, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt, E-mail:

Funding source: Taif University Researchers Supporting Project

Award Identifier / Grant number: TURSP – 2020/19

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Taif University Researchers Supporting Project number (TURSP – 2020/19), Taif University, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Data availability: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

1. Muñoza, A. G., Schultze, J. W. Electrochim. Acta 2004, 49, 293–301.10.1016/j.electacta.2003.08.011Search in Google Scholar

2. Zucchi, F., Fonsati, M., Trabanelli, G. J. Appl. Electrochem. 1998, 28, 441.10.1023/A:1003252824931Search in Google Scholar

3. Grujicic, D., Pesic, B. Electrochim. Acta 2006, 51, 2678; https://doi.org/10.1016/j.electacta.2005.08.017.Search in Google Scholar

4. Itagaki, M., Nakazawa, H., Watanabe, K., Noda, K. Corros. Sci. 1997, 39, 901; https://doi.org/10.1016/s0010-938x(97)81157-2.Search in Google Scholar

5. Guo, C., Shi, S., Dai, H., Yu, J., Chen, X. Corrosion mechanisms of nickel-based alloys in chloride-containing hydrofluoric acid solution. Eng. Failure Anal. 2022, 140, 106580; https://doi.org/10.1016/j.engfailanal.2022.106580.Search in Google Scholar

6. Yanqiu, Y., Zhixun, W., Yanchao, Z., Jiapo, W., Zhenwei, L. I., Zhufeng, Y. Effect of crystallographic orientation on the corrosion resistance of Ni-based single crystal superalloys. Corros. Sci. 2020, 170, 108643; https://doi.org/10.1016/j.corsci.2020.108643.Search in Google Scholar

7. El-Taib Heakal, F., Deyab, M. A., Osman, M. M., Nessim, M. I., Elkholy, A. E. Synthesis and assessment of new cationic Gemini surfactants as inhibitors for carbon steel corrosion in oilfield water. RSC Adv. 2017, 7, 47335–47352; https://doi.org/10.1039/c7ra07176k.Search in Google Scholar

8. Li, P., Du, M. Effect of chloride ion content on pitting corrosion of dispersion-strengthened-high-strength steel. Corros. Commun. 2022, 7, 23–34; https://doi.org/10.1016/j.corcom.2022.03.005.Search in Google Scholar

9. Xiong, X. H., Chen, L. B., Hu, K. X., Wang, Z. P., Zhang, Q. X., Lei, Y. J. Influence of temperature and chloride ion concentration on the corrosion behavior of Mg-4Al-3Ca-0.5RE alloy Mater. Corros. 2019, 70, 1214–1221; https://doi.org/10.1002/maco.201810626.Search in Google Scholar

10. Ahn, S., Kwon, H., Macdonald, D. D. Role of chloride ion in passivity breakdown on iron and nickel. J. Electrochem. Soc. 2005, 152, B482; https://doi.org/10.1149/1.2048247.Search in Google Scholar

11. Hoar, T., Mears, D., Rothwell, G. The relationships between anodic passivity, brightening and pitting. Corros. Sci. 1965, 5, 279–289; https://doi.org/10.1016/s0010-938x(65)90614-1.Search in Google Scholar

12. Deyab, M. A. Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J. Power Sources 2018, 390, 176–180; https://doi.org/10.1016/j.jpowsour.2018.04.053.Search in Google Scholar

13. Zaky, M. T., Nessim, M. I., Deyab, M. A. Synthesis of new ionic liquids based on dicationic imidazolium and their anti-corrosion performances. J. Mol. Liq. 2019, 290, 111230; https://doi.org/10.1016/j.molliq.2019.111230.Search in Google Scholar

14. Deyab, M. A., Keera, S. T. Cyclic voltammetric studies of carbon steel corrosion in chloride-formation water solution and effect of some inorganic salts. Egypt. J. Pet. 2012, 21, 31–36; https://doi.org/10.1016/j.ejpe.2012.02.005.Search in Google Scholar

15. Deyab, M. A., Hamdi, N., Lachkar, M., El Bali, B. Clay/Phosphate/Epoxy nanocomposites for enhanced coating activity towards corrosion resistance. Prog. Org. Coat. 2018, 123, 232–237; https://doi.org/10.1016/j.porgcoat.2018.07.017.Search in Google Scholar

16. Deyab, M. A., Ouarsal, R., Al-Sabagh, A. M., Lachkar, M., El Bali, B. Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogenphosphate compound. Prog. Org. Coat. 2017, 107, 37–42; https://doi.org/10.1016/j.porgcoat.2017.03.014.Search in Google Scholar

17. Shehnazdeep, B. P. A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: a review. Mater. Today Proc. 2022, 65, 1360–1366; https://doi.org/10.1016/j.matpr.2022.04.296.Search in Google Scholar

18. Bolzoni, F., Brenna, A., Ormellese, M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cem. Concr. Res. 2022, 154, 106719; https://doi.org/10.1016/j.cemconres.2022.106719.Search in Google Scholar

19. Abd El-Rehim, S. S., Hassan, H. H., Deyab, M. A., Abd El Moneim, A. Experimental and theoretical investigations of adsorption and inhibitive properties of Tween 80 on corrosion of aluminum alloy (A5754) in alkaline media. Z. Phys. Chem. 2016, 230, 67–78; https://doi.org/10.1515/zpch-2015-0614.Search in Google Scholar

20. Zein El-Abedin, S. J. Appl. Electrochem. 2001, 31, 711; https://doi.org/10.1023/a:1017587911095.10.1023/A:1017587911095Search in Google Scholar

21. Moll, D. V. V., Salvarezza, R. C. J. Electrochem. Soc. 1985, 132, 754; https://doi.org/10.1149/1.2113953.Search in Google Scholar

22. Sato, N. Ibid 1982, 129, 260C; https://doi.org/10.1149/1.2123808.Search in Google Scholar

23. Abd El-Aal, E. E. Corros. Sci. 2003, 45, 759.10.1016/S0010-938X(02)00180-4Search in Google Scholar

24. MacDougall, B., Cohem, M. J. Electrochem. Soc. 1977, 124, 1185.10.1149/1.2133525Search in Google Scholar

25. MacDougall, B. J. Electrochem. Soc. 1978, 125, 1883; https://doi.org/10.1149/1.2131318.Search in Google Scholar

26. MacDougall, B. J. Electrochem. Soc. 1979, 126, 919; https://doi.org/10.1149/1.2129194.Search in Google Scholar

27. MacDougall, B., Mitchell, D. F., Sproule, G. I., Graham, M. J. J. Electrochem. Soc. 1985, 130, 543; https://doi.org/10.1149/1.2119748.Search in Google Scholar

28. MacDougall, B., Graham, M. J. J. Electrochem. Soc. 1985, 132, 2552; https://doi.org/10.1149/1.2113622.Search in Google Scholar

29. Real, S. G., Vilche, J. R., Arv´ýa, A. J. Corros. Sci. 1980, 20, 586.10.1016/0010-938X(80)90072-4Search in Google Scholar

30. Almarshad, A. I., Jamal, D. J. Appl. Electrochem. 2004, 34, 67; https://doi.org/10.1023/b:jach.0000005579.84264.73.10.1023/B:JACH.0000005579.84264.73Search in Google Scholar

31. Abd El Meguid, E. A., Mahmoud, N. A., Gouda, V. K. Br. Corros. J. 1998, 33, 42; https://doi.org/10.1179/bcj.1998.33.1.42.Search in Google Scholar

32. Aramaki, K., Shimura, T. Corros. Sci. 2006, 48, 209.10.1016/j.corsci.2004.11.016Search in Google Scholar

Received: 2022-09-17
Accepted: 2022-11-21
Published Online: 2022-12-02
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2022-0128/html
Scroll to top button