Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 12, 2022

Study of structure of nonaqueous reverse micelles with o-nitroaniline and methyl orange as molecular probes: comparison with an aqueous reverse micelles

  • Manoni Kurtanidze , Natia Mzareulishvili , Marina Rukhadze EMAIL logo , George Bezarashvili and Nelly Sidamonidze

Abstract

Instead of water reversed micelles can also be formed with polar organic solvents possessed with high dielectric constant and very low solubility in oil phase. Nonaqueous reverse micelles or microemulsions represent an interesting microreactors for various reactions, especially for reactions, where reagents can react with water. Study of localization places of molecular probes in organic polar pockets of reverse micelles is topical. The solvatochromic behavior of optical probes ortho-nitroaniline (o-NA) and methyl orange (MO) was studied in nonaqueous reverse micelles on the basis of surfactants sodium bis (2-ethylhexyl) sulfosuccinate (AOT) and polyoxyethylene (4) lauryl ether (C12E4) and polar organic solvents (acetonitrile, dimethylformamide, glacial acetic acid, etc.) insoluble in oil phase hexane. The strength of binding of o-NA and MO to AOT and C12E4 reversed micelles was assesssed via binding constant (K b ) and association degree (α) respectively. Donor, acceptor, or dipole-dipole interactions ability of the solvent to the head groups of surfactant was taken into account in order to explain results obtained with UV–visible spectroscopic method. The binding constants of o-NA with reverse AOT micelles in the presence of various solvents in the pockets of reversed micelles increase in the following row water < glacial acetic acid < acetonitrile < dimethylformamide < dimethyl sulfoxide, but this sequence is reversed when o-NA binds to C12E4 reverse micelles. The high value of the proton donor or acidity parameter in the water molecule (x d  = 0.37) determines the weak binding of o-NA to the head AOT groups (K b  = 20.8) in case of aqueous reverse micelles. The high value of the dipole parameter in the dimethylformamide molecule (x n  = 0.40) promotes its strong interaction with nonionic polyoxyethylene groups of C12E4, which results in low value of binding constant (K b  = 26.5) in case of optical probe o-NA and low value of association degree (α = 0.60) using MO as absorption probe. The results of this article will contribute to the improvement of the concept of interfacial processes, viz.: (i) some issues of supramolecular chemistry, (ii) revealing the contribution of parameters of donor, acceptor or dipole-dipole interaction in a polar organic solvent at the surfactant/nonpolar organic solvent interface, and (iii) features of the dissolution of optical probes in non-aqueous reverse micelles.


Corresponding author: Marina Rukhadze, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, 3 I.Chavchavadze ave, Tbilisi, 0179, Georgia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

1. Moulik, S. P., Rakshit, A. K. Physicochemistry and applications of microemulsions. J. Surf. Sci. Technol. 2006, 22, 159–186; https://doi.org/10.18311/jsst/2006/1965.Search in Google Scholar

2. Hoppert, M., Prokaryotes, M. F. Am. Sci. 1999, 87, 518–525.10.1511/1999.42.837Search in Google Scholar

3. Sawada, K., Ueda, M. Characteristics of aqueous microenvironments in non-ionic surfactant reverse micelles and their use for enzyme reactions in non-aqueous media. J. Chem. Technol. Biotechnol. 2004, 79, 369–375; https://doi.org/10.1002/jctb.984.Search in Google Scholar

4. Vanag, V. K., Hanazaki, I. Frequency-multiplying bifurcation in the oscillatory Belousov–Zhabotinskii reaction proceeding in interacting water droplets of the reverse microemulsion of the aerosol OT in octane. J. Phys. Chem. 1995, 99, 6944–6950; https://doi.org/10.1021/j100018a028.Search in Google Scholar

5. Epstein, I. R., Vanag, V. K. Complex patterns in reactive microemulsions: self-organized nanostructures? Chaos 2005, 15, 047510–047517; https://doi.org/10.1063/1.2102447.Search in Google Scholar PubMed

6. Jain, T. K., Varshney, M., Maitra, A. Structural studies of Aerosol OT reverse micellar aggregates by FT-IR spectroscopy. J. Phys. Chem. 1989, 93, 7409–7416; https://doi.org/10.1021/j100358a032.Search in Google Scholar

7. Butkhuzi, T., Chaladze, R., Lominadze, N., Rukhadze, M., Gvaramia, M., Kurtanidze, M., Bezarashvili, G., Sigua, K. Study of influence of ionic additives to AOT reverse microemulsions by liquid chromatography, IR and UV–visible spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 98–104; https://doi.org/10.1016/j.colsurfa.2013.03.001.Search in Google Scholar

8. Butkhuzi, T., Kurtanidze, M., Chaladze, R., Gvaramia, M., Rukhadze, M., Bezarashvili, G., Sigua, K., Pradhan, P. Investigation of influence of nonionic additives on structural changes of water droplets encapsulated in AOT reverse micelles by instrumental methods. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 123–129; https://doi.org/10.1016/j.colsurfa.2014.03.067.Search in Google Scholar

9. Zhu, D., Schelly, Z. A. Investigation of the microenvironment in triton X-100 reverse micelles in Cyclohexane,Using methyl orange as a probe. Langmuir 1992, 8, 48–50; https://doi.org/10.1021/la00037a011.Search in Google Scholar

10. Correa, N. M., Silber, J. J. Binding of nitroanilines to reverse micelles of AOT n-hexane. J. Mol. Liq. 1997, 72, 163–176; https://doi.org/10.1016/S0167-7322(97)00037-8.Search in Google Scholar

11. Qi, L., Ma, J. Investigation of the microenvironment in nonionic reverse micelles using methyl orange and methylene blue as absorption probes. J. Colloid Interface Sci. 1998, 197, 36–42; https://doi.org/10.1006/jcis.1997.5228.Search in Google Scholar PubMed

12. Falcone, R. D., Silber, J. J., Biasutti, M. A., Correa, N. M. Binding of o-nitroaniline to nonaqueous AOT reverse micelles. Org. Chem. Argentina. ARKIVOC 2011, vii, 369–379; https://doi.org/10.3998/ark.5550190.0012.730.Search in Google Scholar

13. Petcu, A. R., Rogozea, E. A., Lazar, C. A., Olteanu, N. L., Meghea, A., Mihaly, M. Specific interactions within micelle microenvironment in different charged dye/surfactant systems. Arab. J. Chem. 2016, 9, 9–17; https://doi.org/10.1016/j.arabjc.2015.09.009.Search in Google Scholar

14. Rahdar, A., Almasi-Kashi, M. Dynamic and spectroscopic studies of nano-micelles comprising dyein water/dioctyl sodium sulfosuccinate/decane dropletmicroemulsion at constant water content. J. Mol. Struct. 2017, 1128, 257–262; https://doi.org/10.1016/j.molstruc.2016.08.076.Search in Google Scholar

15. Rahdar, A., Almasi-Kashi, M., Aliahmad, M. Effect of chain length of oil on location of dye within AOT nanometer-sized droplet microemulsions at constant water content. J. Mol. Liq. 2017, 233, 398–402; https://doi.org/10.1016/j.molliq.2017.03.003.Search in Google Scholar

16. Rahdar, A., Almasi-Kashi, M., Muhammad, Kh. A., Aliahmad, M., Salimi, A., Guettari, M., Kohne, H. E. G. Effect of ion exchange in NaAOT surfactant on droplet size and location of dye within Rhodamine B (RhB)-containing microemulsion at low dye concentration. J. Mol. Liq. 2018, 252, 506–513; https://doi.org/10.1016/j.molliq.2018.01.004.Search in Google Scholar

17. Rahdar, A., Aliahmad, M. A., Kor, M., Sahoo, D. Probing the reverse micelle environment with a cationic dye by varying oil and water content of micelles. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 210, 165–170; https://doi.org/10.1016/j.saa.2018.11.015.Search in Google Scholar PubMed

18. Rahdar, A., Salmani, S., Sahoo, D. (b) Effect of the reverse micelle and oil content in reverse micelle on nonlinear optical properties of Rhodamine B. J. Mol. Struct. 2019, 1191, 237–243; https://doi.org/10.1016/j.molstruc.2019.04.083.Search in Google Scholar

19. Shirota, H., Horie, K. Solvation dynamics in nonaqueous reverse micelles. J. Phys. Chem. B 1999, 103, 1437–1443; https://doi.org/10.1021/jp983605e.Search in Google Scholar

20. Falcone, R. D., Correa, N. M., Biasutti, M. A., Silber, J. J. Comparison between aqueous and nonaqueous AOT-heptane reverse micelles using acridine orange as molecular probe. Molecules 2000, 5, 553–554; https://doi.org/10.3390/50300553.Search in Google Scholar

21. Falcone, R. D., Correa, N. M., Biasutti, M. A., Silber, J. J. The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles. J. Colloid Interface Sci. 2006, 296, 356–364; https://doi.org/10.1016/j.jcis.2005.08.049.Search in Google Scholar PubMed

22. Correa, N. M., Levinger, N. E. What can you learnfrom a molecular probe? New insights on the behavour of C343 in homogeneous solutions and AOT reverse micelles. J. Phys. Chem. B 2006, 110, 13050–13061; https://doi.org/10.1021/jp0572636.Search in Google Scholar PubMed

23. Durantini, M. A., Falcone, R. D., Silber, J. J., Correa, N. M. Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles. ChemPhysChem 2009, 10, 2034–2040; https://doi.org/10.1002/cphc.200900130.Search in Google Scholar PubMed

24. Ghosh, S. Comparative studies on brij reverse micelles prepared in benzene/surfactant/ethylammonium nitrate systems: effect of head group size and polarity of the hydrocarbon chain. J. Colloid Interface Sci. 2011, 360, 672–680; https://doi.org/10.1016/j.jcis.2011.05.006.Search in Google Scholar PubMed

25. Quintana, S. S.D.R., Silber, J. J., Moyano, F., Correa, N. M. On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles. Effect of the polar solvent. Phys. Chem. Chem. Phys., 2015, 17, 7002–7011; https://doi.org/10.1039/c4cp05024j.Search in Google Scholar PubMed

26. Federico, M., Agazzi, R., Falcone, D., Silber, J. J., Correa, N. M. Non-aqueous reverse micelles created with a cationic surfactant: encapsulating ethylene glycol in BHDC/non-polar solvent blends. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 467–473; https://doi.org/10.1016/j.colsurfa.2016.09.070.Search in Google Scholar

27. Engberts, J. B. F. N., Fernández, E., García-Río, L., Leis, J. R. Water in oil microemulsions as reaction media for a Diels−Alder reaction between N-ethylmaleimide and cyclopentadiene. J. Org. Chem. 2006, 71, 4111–4117; https://doi.org/10.1021/jo060127s.Search in Google Scholar PubMed

28. Buntkowsky, G., Vogel, M., Winter, R. Properties of hydrogen-bonded liquids at interfaces. Z. Phys. Chem. 2018, 232, 937–972; https://doi.org/10.1515/zpch-2018-1110.Search in Google Scholar

29. Snyder, L. R. Classification off the solvent properties of common liquids. J. Chromatogr. Sci. 1978, 16, 223–234; https://doi.org/10.1093/chromsci/16.6.223.Search in Google Scholar

30. Moulik, S. P., Mukherjee, K. On the versatile surfactant aerosol-OT (AOT): its physicochemical and surface chemical behaviours and uses. Proc. Indian National Sci. Acad. 1996, 62, 215–232.Search in Google Scholar

31. Chang, G., Huang, T., Hung, H. Reverse micelles as life-mimicking systems. Proc. Natl. Sci. Counc. ROC (B) 2000, 24, 89–100.Search in Google Scholar

32. Gebicka, L., Jurgas-Grudzinska, M. Activity and stability of catalase in nonionic micellar and reverse micellar systems. Z. Naturforsch. 2004, 59, 887–891; https://doi.org/10.1515/znc-2004-11-1220.Search in Google Scholar PubMed

33. Kerr, D. J., Wheldon, T. E., Russell, J. G., Maurer, H. R., Florence, A. T., Halbert, G. W., Freshney, R. I., Kaye, S. B. The effect of the non-ionic surfactant Brij 30 on the cytotoxicity of adriamycin in monolayer, spheroid and clonogenic culture systems. Eur.J.Cancer Clin. Oncol 1987, 23, 1315–1322; https://doi.org/10.1016/0277-5379(87)90114-3.Search in Google Scholar PubMed

34. Correa, N. M., Biasutti, M. A., Silber, J. J. Micropolarity of reversed micelles: comparison between anionic, cationic, and nonionic reversed micelles. J. Colloid Interface Sci. 1996, 184, 570–578; https://doi.org/10.1006/jcis.1996.0653.Search in Google Scholar PubMed

35. Maxim, M. E., Stinga, G., Iovescu, A., Baran, A., Ilie, C., Anghel, D. F. Monitorizing methylene blue inclusion in reverse micellar nanostructures. Rev. Roum. Chem. 2012, 57, 203–208.Search in Google Scholar

36. Drago, R. Physical Methods in Chemistry; Mir Publishers: Moscow, Vol. 1, 1981; p. 422.Search in Google Scholar

37. Prokhorov, Y. V., Ed. The Mathematical Encyclopedic Dictionary; Sovetskaya Entsiklopediya: Moscow, Vol. 846, 1988; 319–320.Search in Google Scholar

38. Properties of Common Laboratory Solvents; pp. 1–5. https://chemistry.mdma.ch/hiveboard/rhodium/pdf/chemical-data/solvents.pdf.Search in Google Scholar

39. Moilanen, D. E., Fenn, E. E., Wong, D., Fayer, M. D. Water dynamics at the interface in AOT reverse micelles. J. Phys. Chem. B 2009, 113, 8560–8568; https://doi.org/10.1021/jp902004r.Search in Google Scholar PubMed PubMed Central

40. Stephane, A., Fabio, S., Bandyopadhyay, S., Marchi, M. Molecular modeling and simulations of AOT-water reverse micelles in isooctane: structural and dynamic properties. J. Phys. Chem. B 2004, 108, 19458–19466; https://doi.org/10.1021/jp047138e.Search in Google Scholar

Received: 2022-02-01
Accepted: 2022-11-28
Published Online: 2022-12-12
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2022-0011/html
Scroll to top button