Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 7, 2020

Solubilization, Hansen solubility parameters and apparent thermodynamic parameters of Osimertinib in (propylene glycol + water) cosolvent mixtures

  • Faiyaz Shakeel EMAIL logo , Md. Khalid Anwer , Nazrul Haq and Ibrahim A. Alsarra

Abstract

The solubilization, Hansen solubility parameters (HSPs) and apparent thermodynamic parameters of a novel anticancer medicine osimertinib (OMT) in binary propylene glycol (P) + water (W) cosolvent mixtures were evaluated. The mole fraction solubility (xe) of OMT in various (P + W) cosolvent mixtures including neat P and neat W was determined at T = 298.2–318.2 K and p = 0.1 MPa by applying a saturation shake flask method. HSPs of OMT, neat P, neat W and (P + W) cosolvent compositions free of OMT were also estimated. The xe values of OMT were regressed with Van’t Hoff, modified Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models with an average errors of <3.0 %. The highest and lowest xe value of OMT was estimated in neat P (2.70 × 10−3 at T = 318.2 K) and neat W (1.81 × 10−5 at T = 298.2 K), respectively. Moreover, HSP of OMT was found to be closed with that of neat P. The solubility of OMT was found to be increased significantly with an increase in temperature and P mass fraction in all (P + W) cosolvent compositions including neat P and neat W. The results of activity coefficients suggested higher molecular interactions in OMT-P combination compared with OMT-W combination. The results of thermodynamic studies indicated an endothermic and entropy-driven dissolution of OMT in all (P + W) cosolvent compositions including neat P and neat W.


Corresponding author: Dr. Faiyaz Shakeel, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, E-mail:

Acknowledgments

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group no. RG-1435-005.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by Deanship of Scientific Research under grant RG-1435-005.

  3. Conflict of interest statement: The authors report no conflict of interest associated with this manuscript.

References

1. US FDA. AstraZeneca Pharmaceuticals LP TAGRISSOTM (osimertinib) tablet: highlights of prescribing information. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208065s007lbl.pdfN (accessed Jan 29, 2018).Search in Google Scholar

2. Herbst, R. S., Heymach, J. V., Lippman, S. M. N. Engl. J. Med. 2008, 359, 1367; https://doi.org/10.1056/nejmra0802714.Search in Google Scholar PubMed

3. Yang, P., Allens, M. S., Abury, M. C., Wampfler, J. A., Marks, R. S., Thibodeau, S., Adiei, A. A., Jett, J., Deschamps, C. Chest 2005, 128, 452; https://doi.org/10.1378/chest.128.1.452.Search in Google Scholar PubMed

4. Castro, A. S., Parente, B., Gonçalves, I., Antunes, A., Barroso, A., Conde, S., Neves, S., Machado, J. C. Rev. Port. Pneumol. 2013, 19, 7; https://doi.org/10.1016/j.rppnen.2013.01.002.Search in Google Scholar

5. Gahr, S., Stoehr, R., Geissinger, E., Ficker, J. H., Brueckl, W. M., Gschwendtner, A., Gattenloehner, S., Fuchs, F. S., Schulz, C., Rieker, R. J., Hartmann, A., Ruemmele, P., Dietmaier, W. Br. J. Cancer 2013, 109, 1821; https://doi.org/10.1038/bjc.2013.511.Search in Google Scholar PubMed PubMed Central

6. Janssens, A., De Droogh, E., Lefebure, A., Kockx, M., Pauwels, P., Germonpre, P., van Meerbeeck, J. P. Acta Clin. Belg. 2014, 69, 92; https://doi.org/10.1179/0001551214z.00000000029.Search in Google Scholar

7. Kuiper, J. L., Heideman, D. A., Thunnissen, E., Paul, M. A., van Wijk, A. W., Postmus, P. E., Smit, E. F. Lung Cancer 2014, 85, 19; https://doi.org/10.1016/j.lungcan.2014.03.016.Search in Google Scholar PubMed

8. Oxnard, G. R., Arcila, M. E., Sima, C. S., Riely, G. J., Chmielecki, J., Kris, M. G., Pao, W., Ladanyi, M., Miller, V. A. Clin. Cancer Res. 2011, 17, 1616; https://doi.org/10.1158/1078-0432.ccr-10-2692.Search in Google Scholar

9. Al-Shahrani, S., Ansari, M. J. Indo Am. J. Pharm. Sci. 2018, 5, 2610.https://doi.org/10.5281/zenodo.1220226.Search in Google Scholar

10. Kale, A. R., Kakade, S., Bhosale, A. Curr. Pharm. Res. 2020, 10, 3630.Search in Google Scholar

11. Imran, M. Z. Phys. Chem. 2019, 233, 273; https://doi.org/10.1515/zpch-2017-1066.Search in Google Scholar

12. Alshetaili, A. S. Z. Phys. Chem. 2019, 233, 1129; https://doi.org/10.1515/zpch-2018-1323.Search in Google Scholar

13. Castro, G. T., Flippa, M. A., Peralta, C. M., Davin, M. V., Almandoz, M. C., Gassul, E. I. Z. Phys. Chem. 2018, 232, 257; https://doi.org/10.1515/zpch-2017-0946.Search in Google Scholar

14. Dumbrava, A., Berger, D., Prodan, G., Moscalu, F., Diacon, A. Z. Phys. Chem. 2018, 232, 61.https://doi.org/10.1515/zpch-2017-0005.Search in Google Scholar

15. Kuttich, B., Malt, A., Weber, A., Grefe, A. K., Vietze, L., Stuhn, B. Z. Phys. Chem. 2018, 232, 1089; https://doi.org/10.1515/zpch-2017-1018.Search in Google Scholar

16. Shakeel, F., Haq, N., Siddiqui, N. A., Alanazi, F. K., Alsarra, I. A. Food Chem. 2015, 188, 57; https://doi.org/10.1016/j.foodchem.2015.04.113.Search in Google Scholar PubMed

17. Bhat, M. A., Haq, N., Shakeel, F. Thermochim. Acta 2014, 593, 37; https://doi.org/10.1016/j.tca.2014.08.013.Search in Google Scholar

18. Jouyban-Gharamaleki, V., Rahimpour, E., Hemmati, S., Martinez, F., Jouyban, A. J. Mol. Liq. 2020, 299, E112136; https://doi.org/10.1016/j.molliq.2019.112136.Search in Google Scholar

19. Osorio, I. M., Martinez, F., Delgado, D. R., Jouyban, A., Acree, W. E.Jr. J. Mol. Liq. 2020, 297, E111889; https://doi.org/10.1016/j.molliq.2019.111889.Search in Google Scholar

20. Li, W., Farajtabar, A., Xing, R., Zhu, Y., Lv, R. J. Chem. Thermodyn. 2020, 143, E106045; https://doi.org/10.1016/j.jct.2019.106045.Search in Google Scholar

21. Anwer, M. K., Mohammad, M., Fatima, F., Alshahrani, S. M., Aldawsari, M. F., Alalaiwe, A., Al-Shdefat, R., Shakeel, F. J. Mol. Liq. 2019, 284, 53; https://doi.org/10.1016/j.molliq.2019.03.128.Search in Google Scholar

22. Higuchi, T., Connors, K. A. Adv. Anal. Chem. Inst. 1965, 4, 117.Search in Google Scholar

23. Zhu, Q. N., Wang, Q., Hu, Y. B., Abliz, X. Molecules 2019, 24, E1346; https://doi.org/10.3390/molecules24071346.Search in Google Scholar PubMed PubMed Central

24. Shakeel, F., Haq, N., Alsarra, I. A., Alshehri, S. Molecules 2020, 25, E1559; https://doi.org/10.3390/molecules25071559.Search in Google Scholar PubMed PubMed Central

25. Alshahrani, S. M., Shakeel, F. Molecules 2020, 25, E2124; https://doi.org/10.3390/molecules25092124.Search in Google Scholar PubMed PubMed Central

26. Wan, Y., He, H., Huang, Z., Zhang, P., Sha, J., Li, T., Ren, B. J. Mol. Liq. 2020, 300, E112097; https://doi.org/10.1016/j.molliq.2019.112097.Search in Google Scholar

27. Ruidiaz, M. A., Delgado, D. R., Martínez, F., Marcus, Y. Fluid Phase Equilib 2010, 299, 259; https://doi.org/10.1016/j.fluid.2010.09.027.Search in Google Scholar

28. Hildebrand, J. H., Prausnitz, J. M., Scott, R. L. Regular and Related Solutions; Van Nostrand Reinhold: New York, 1970.Search in Google Scholar

29. Manrique, Y. J., Pacheco, D. P., Martínez, F. J. Sol. Chem. 2008, 37, 165–181; https://doi.org/10.1007/s10953-007-9228-0.Search in Google Scholar

30. Holguín, A. R., Rodríguez, G. A., Cristancho, D. M., Delgado, D. R., Martínez, F. Fluid Phase Equilib 2012, 324, 134; https://doi.org/10.1016/j.fluid.2011.11.001.Search in Google Scholar

31. Krug, R. R., Hunter, W. G., Grieger, R. A. J. Phys. Chem. 1976, 80, 2341; https://doi.org/10.1021/j100562a007.Search in Google Scholar

32. Apelblat, A., Manzurola, E. J. Chem. Thermodyn. 1999, 31, 85; https://doi.org/10.1006/jcht.1998.0424.Search in Google Scholar

33. Manzurola, E., Apelblat, A. J. Chem. Thermodyn. 2002, 34, 1127; https://doi.org/10.1006/jcht.2002.0975.Search in Google Scholar

34. Yalkowsky, S. H., Roseman, T. J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S. H., Ed. Marcel Dekker Inc: New York, 1981; pp. 91–134.Search in Google Scholar

35. Jouyban, A. J. Pharm. Pharm. Sci. 2008, 11, 32; https://doi.org/10.18433/j3pp4k.Search in Google Scholar PubMed

36. Shakeel, F., Haq, N., Alanazi, F. K., Alsarra, I. A. J. Ind. Eng. Chem. 2017, 56, 99; https://doi.org/10.1016/j.jiec.2017.07.002.Search in Google Scholar

37. Khoubnasabjafari, M., Shayanfar, A., Martínez, F., Acree, W. E.Jr., Jouyban, A. J. Mol. Liq. 2016, 219, 435; https://doi.org/10.1016/j.molliq.2016.03.043.Search in Google Scholar

38. Jouyban-Gharamaleki, A., Hanaee, J. Int. J. Pharm. 1997, 154, 245; https://doi.org/10.1016/s0378-5173(97)00136-1.Search in Google Scholar

Received: 2020-07-25
Accepted: 2020-09-24
Published Online: 2020-10-07
Published in Print: 2021-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-1719/html
Scroll to top button