Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 2, 2014

Simulation of Complex Movements Using Artificial Neural Networks

  • Hoik Cruse , Jeffrey Dean , Thomas Kindermann , Josef Schmitz and Michael Schumm

Abstract

A simulated network for controlling a six-legged, insect-like walking system is proposed. The network contains internal recurrent connections, but important recurrent connections utilize the loop through the environment. This approach leads to a subnet for controlling the three joints of a leg during its swing which is arguably the simplest possible solution. The task for the stance subnet appears more difficult because the movements of a larger and varying number of joints (9 -18: three for each leg in stance) have to be controlled such that each leg contributes efficiently to support and propulsion and legs do not work at cross purposes. Already inherently non-linear, this task is further complicated by four factors: 1) the combination of legs in stance varies continuously, 2) during curve walking, legs must move at different speeds, 3) on compliant substrates, the speed of the individual leg may vary unpredictably, and 4) the geometry of the system may vary through growth and injury or due to non-rigid suspension of the joints. This task appears to require some kind of “motor intelligence”. We show that an extremely decentralized, simple controller, based on a combi­nation of negative and positive feedback at the joint level, copes with all these problems by exploiting the physical properties of the system.

Received: 1998-4-22
Published Online: 2014-6-2
Published in Print: 1998-8-1

© 1946 – 2014: Verlag der Zeitschrift für Naturforschung

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/znc-1998-7-816/html
Scroll to top button