Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 30, 2023

Excitation wavelength altered PL study of Co doped ZnO nanoparticles suitable for white LED application

  • N. Lavanya and N. K. Deepak ORCID logo EMAIL logo

Abstract

ZnO nanoparticles doped with Co at different concentration (Zn1−xCo x O) were synthesized by sol–gel auto combustion method and are characterized by using various characterization tools. Structural study using X-ray diffraction technique (XRD) analysis showed the crystalline nature with hexagonal wurtzite geometry and the composition analysis using energy dispersive X-ray spectroscopy (EDX) confirmed the incorporation of Co in the ZnO lattice in the case of doped nanoparticles. Scanning electron-microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the prepared nanoparticles as spherical, loosely agglomerated and having dimension of nanoscale. UV–vis DRS studies indicated a red shift in optical band gap with Co doping. PL spectra exhibits emission in the UV and visible region and the analysis revealed information about the presence of various types of defects in the ZnO lattice. An increase in the excitation wavelength gives intense emission in the high wavelength region for doped nanoparticles confirming the presence of divalent and monovalent oxygen as main defects. The Zn0.93Co0.07O nanoparticles records CIE coordinates lying in the white region of CIE color space at 350 nm with CCT of 5561.4 K suggesting their suitability in fabrication of white light emitting diodes.


Corresponding author: N. K. Deepak, Department of Physics, School of Pure and Applied Physics, Kannur University, Payyanur Campus 670327, Kannur, Kerala, India, E-mail: ;

Funding source: The authors received no funding for the current research work.

Award Identifier / Grant number: Unassigned

Acknowledgements

Authors gratefully acknowledge Sophisticated Analytical Instrument Facility, STIC, Kochi for technical support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors received no funding for the current research work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Q. Shi, K. Ling, S. Duan, et al.., “Single-phased emission-tunable Mg and Ce co-doped ZnO quantum dots for white LEDs,” Spectrochim. Acta, Part A, vol. 231, p. 118096, 2020. https://doi.org/10.1016/j.saa.2020.118096.Search in Google Scholar PubMed

[2] M. Faraz, K. F. Naqvi, M. Shakir, and N. Khare, “Synthesis of samarium-doped zinc oxide nanoparticles with improved photocatalytic performance and recyclability under visible light irradiation,” New J. Chem., vol. 42, p. 2295, 2018. https://doi.org/10.1039/c7nj03927a.Search in Google Scholar

[3] A. Kim, J. Horwitz, W. Kim, A. Makinen, Z. Kafafi, and D. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes,” Thin Solid Films, vol. 420, p. 539, 2002. https://doi.org/10.1016/s0040-6090(02)00836-2.Search in Google Scholar

[4] A. E. Suliman, Y. Tang, and L. Xu, “Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 91, p. 1658, 2007.10.1016/j.solmat.2007.05.014Search in Google Scholar

[5] K. Punia, G. Lal, S. K. Barbar, et al.., “Oxygen vacancies mediated cooperative magnetism in ZnO nanocrystals: a d0 ferromagnetic case study,” Vacuum, vol. 184, p. 109921, 2001. https://doi.org/10.1016/j.vacuum.2020.109921.Search in Google Scholar

[6] A. Kaushik, B. Dalela, R. Rathore, et al.., “Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals,” J. Alloys Compd., vol. 578, p. 328, 2013. https://doi.org/10.1016/j.jallcom.2013.06.015.Search in Google Scholar

[7] J. Sahu, S. Kumar, F. Ahmed, et al.., “Electrochemical and electronic structure properties of high-performance supercapacitor based on Nd-doped ZnO nanoparticles,” J. Energy Storage, vol. 59, p. 106499, 2023. https://doi.org/10.1016/j.est.2022.106499.Search in Google Scholar

[8] G. Lal, K. Punia, H. Bhoi, et al.., “Exploring the structural, elastic, optical, dielectric and magnetic characteristics of Ca2+ incorporated superparamagnetic Zn0.5−xCa0.1Co0.4+xFe2O4 (x = 0.0, 0.05 & 0.1) nanoferrites,” J. Alloys Compd., vol. 886, p. 161190, 2021. https://doi.org/10.1016/j.jallcom.2021.161190.Search in Google Scholar

[9] Q. Shi, Z. Wang, Y. Liu, et al.., “Single-phased emission-tunable Mg-doped ZnO phosphors for white LEDs,” J. Alloys Compd., vol. 553, p. 172, 2013. https://doi.org/10.1016/j.jallcom.2012.11.135.Search in Google Scholar

[10] P. Sathish, N. Dineshbabu, K. Ravichandran, et al.., “Combustion synthesis, characterization and antibacterial properties of pristine ZnO and Ga doped ZnO nanoparticles,” Ceram. Int., vol. 47, p. 27934, 2021. https://doi.org/10.1016/j.ceramint.2021.06.224.Search in Google Scholar

[11] M. Sajjad, I. Ullah, M. I. Khan, J. Khan, M. Y. Khan, and M. T. Qureshi, “Structural and optical properties of pure and copper doped zinc oxide nanoparticles,” Results Phys., vol. 9, p. 1301, 2018. https://doi.org/10.1016/j.rinp.2018.04.010.Search in Google Scholar

[12] M. M. H. Farooqi and R. K. Srivastava, “Enhanced UV–vis photoconductivity and photoluminescence by doping of samarium in ZnO nanostructures synthesized by solid state reaction method,” Optik, vol. 127, p. 3991, 2016. https://doi.org/10.1016/j.ijleo.2016.01.074.Search in Google Scholar

[13] J. Sahu, P. A. Alvi, V. S. Vats, et al., “Structural, optical and electronic properties of ZnO nanoparticles,” Nano, vol. 16, p. 2150130, 2021.10.1142/S1793292021501307Search in Google Scholar

[14] J. Sahu, S. Kumar, V. S. Vats, et al.., “Exploring the defects and vacancies with photoluminescence and XANES studies of Gd 3+ ‐substituted ZnO nanoparticles,” Part. Part. Syst. Charact., vol. 39, p. 2200116, 2022. https://doi.org/10.1002/ppsc.202200116.Search in Google Scholar

[15] A. Khayatian, M. A. Kashi, R. Azimirad, S. Safa, and S. F. A. Akhtarian, “Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors,” Optik, vol. 127, p. 4675, 2016. https://doi.org/10.1016/j.ijleo.2016.01.177.Search in Google Scholar

[16] C. Jayachandraiah, K. S. Kumar, G. Krishnaiah, and N. M. Rao, “Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles,” J. Alloys Compd., vol. 623, p. 248, 2015. https://doi.org/10.1016/j.jallcom.2014.10.067.Search in Google Scholar

[17] I. Choudhary, R. Shukla, A. Sharma, and K. K. Raina, “Effect of excitation wavelength and europium doping on the optical properties of nanoscale zinc oxide,” J. Mater. Sci.: Mater. Electron., vol. 31, p. 20033, 2020. https://doi.org/10.1007/s10854-020-04525-x.Search in Google Scholar

[18] L. El Mir, “Luminescence properties of calcium doped zinc oxide nanoparticles,” J. Lumin., vol. 186, p. 98, 2017. https://doi.org/10.1016/j.jlumin.2017.02.029.Search in Google Scholar

[19] K. Punia, G. Lal, S. Dalela, et al.., “A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals,” J. Alloys Compd., vol. 868, p. 159142, 2021. https://doi.org/10.1016/j.jallcom.2021.159142.Search in Google Scholar

[20] S. Kumar, F. Ahmed, N. Ahmed, et al.., “Structural, morphological, optical and magnetic studies of Cu-doped ZnO nanostructures,” Materials, vol. 15, p. 8184, 2022. https://doi.org/10.3390/ma15228184.Search in Google Scholar PubMed PubMed Central

[21] J. Sahu, S. Kumar, V. S. Vats, et al.., “Role of defects and oxygen vacancy on structural, optical and electronic structure properties in Sm-substituted ZnO nanomaterials,” J. Mater. Sci.: Mater. Electron., vol. 33, p. 21546, 2022. https://doi.org/10.1007/s10854-022-08945-9.Search in Google Scholar

[22] N. Pushpa and M. K. Kokila, “Effect of cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders,” J. Lumin., vol. 190, p. 100, 2017. https://doi.org/10.1016/j.jlumin.2017.05.032.Search in Google Scholar

[23] M. Anandan, S. Dinesh, N. Krishnakumar, and K. Balamurugan, “Influence of Co doping on combined photocatalytic and antibacterial activity of ZnO nanoparticles,” Mater. Res. Express, vol. 3, p. 115009, 2016. https://doi.org/10.1088/2053-1591/3/11/115009.Search in Google Scholar

[24] R. Kripal, A. K. Gupta, R. K. Srivastava, and S. K. Mishra, “Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method,” Spectrochim. Acta, Part A, vol. 79, p. 1605, 2011. https://doi.org/10.1016/j.saa.2011.05.019.Search in Google Scholar PubMed

[25] E. Ghoul, J. M. Kraini, and E. Mir, “Synthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization,” J. Mater. Sci.: Mater. Electron., vol. 26, p. 2555, 2015.10.1007/s10854-015-2722-zSearch in Google Scholar

[26] A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, and R. Seshadri, “Magnetism in polycrystalline cobalt-substituted zinc oxide,” Phys. Rev. B, vol. 68, p. 205202, 2003. https://doi.org/10.1103/physrevb.68.205202.Search in Google Scholar

[27] B. D. Yuhas, S. Fakra, M. A. Marcus, and P. Yang, “Probing the local coordination environment for transition metal dopants in zinc oxide nanowires,” Nano Lett., vol. 7, p. 905, 2007. https://doi.org/10.1021/nl0626939.Search in Google Scholar PubMed

[28] V. Gandhi, R. Ganesan, H. H. A. Syedahamed, and M. Thaiyan, “Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method,” J. Phys. Chem. C, vol. 118, p. 9715, 2014. https://doi.org/10.1021/jp411848t.Search in Google Scholar

[29] S. M. Karadeniz and M. Ö. Yeşilyurt, “Chemically growth of ZnO rods arrays on non-seeded glass substrates,” Surf. Interfaces, vol. 18, p. 100418, 2020. https://doi.org/10.1016/j.surfin.2019.100418.Search in Google Scholar

[30] S. D. Birajdar, V. R. Bhagwat, A. B. Shinde, and K. M. Jadhav, “Effect of Co 2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol–gel auto combustion method,” Mater. Sci. Semicond. Process., vol. 41, p. 441, 2016. https://doi.org/10.1016/j.mssp.2015.10.002.Search in Google Scholar

[31] C. Suryanarayana and M. G. Norton, X-ray Diffraction: A Practical Approach, New York, Plenum Press, 1998.10.1007/978-1-4899-0148-4Search in Google Scholar

[32] I. Khan, S. Khan, R. Nongjai, H. Ahmed, and W. Khan, “Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles,” Opt. Mater., vol. 35, p. 1189, 2013. https://doi.org/10.1016/j.optmat.2013.01.019.Search in Google Scholar

[33] V. D. Mote, J. S. Dargad, and B. N. Dole, “Effect of Mn doping concentration on structural, morphological and optical studies of ZnO nano-particles,” Nanosci. Nanoeng., vol. 1, p. 116, 2013. https://doi.org/10.13189/nn.2013.010204.Search in Google Scholar

[34] F. Mukhtar, T. Munawar, M. S. Nadeem, et al.., “Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies,” J. Nanostruct. Chem., vol. 12, p. 547, 2022. https://doi.org/10.1007/s40097-021-00430-9.Search in Google Scholar

[35] Z. N. Kayani, I. Shah, S. Riaz, and S. Naseem, “Effect of Co doping on the physical properties of Co-doped ZnO nanoparticles,” J. Mater. Sci.: Mater. Electron., vol. 28, p. 5953, 2017. https://doi.org/10.1007/s10854-016-6269-4.Search in Google Scholar

[36] P. Kumar and P. C. Pandey, “Investigations on absorption, photoluminescence and magnetic properties of ZnO: Co nanoparticles,” J. Sol–Gel Sci. Technol., vol. 80, p. 342, 2016. https://doi.org/10.1007/s10971-016-4119-8.Search in Google Scholar

[37] P. R. Chithira and T. T. John, “Correlation among oxygen vacancy and doping concentration in controlling the properties of cobalt doped ZnO nanoparticles,” J. Magn. Magn. Mater., vol. 496, p. 165928, 2020. https://doi.org/10.1016/j.jmmm.2019.165928.Search in Google Scholar

[38] R. Elilarassi and G. Chandrasekaran, “Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method,” J. Mater. Sci.: Mater. Electron., vol. 24, p. 96, 2013. https://doi.org/10.1007/s10854-012-0893-4.Search in Google Scholar

[39] M. Goswami, “Enhancement of photocatalytic activity of synthesized Cobalt doped Zinc Oxide nanoparticles under visible light irradiation,” Opt. Mater., vol. 109, p. 110400, 2020. https://doi.org/10.1016/j.optmat.2020.110400.Search in Google Scholar

[40] J. Sahu, S. Kumar, V. S. Vats, et al.., “Lattice defects and oxygen vacancies formulated ferromagnetic, luminescence, structural properties and band-gap tuning in Nd3+ substituted ZnO nanoparticles,” J. Lumin., vol. 243, p. 118673, 2022. https://doi.org/10.1016/j.jlumin.2021.118673.Search in Google Scholar

[41] K. Punia, G. Lal, P. A. Alvi, et al.., “A comparative study on the influence of monovalent, divalent and trivalent doping on the structural, optical and photoluminescence properties of Zn0.96T0.04O (T: Li+, Ca2+& Gd3+) nanoparticles,” Ceram. Int., vol. 45, p. 13472, 2019. https://doi.org/10.1016/j.ceramint.2019.04.048.Search in Google Scholar

Received: 2023-01-13
Accepted: 2023-05-22
Published Online: 2023-06-30
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0008/html
Scroll to top button