Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 7, 2022

Structure and properties of phases from solid solutions YTIn1−x Al x (T = Ni and Cu)

  • Myroslava Horiacha EMAIL logo , Galyna Nychyporuk , Judith Bönnighausen , Frank Stegemann , Volodymyr Pavlyuk , Rainer Pöttgen and Vasyl’ Zaremba

Abstract

YNiIn and YCuIn form complete solid solutions YNiIn1−x Al x and YCuIn1−x Al x , which were characterized on the basis of X-ray powder diffraction. The ZrNiAl type crystal structures (space groups P 6 2 m ) of YNiAl (a = 0.70386(9), c = 0.38327(4) nm, wR 2 = 0.0424), YNiIn0.77Al0.23 (a = 0.73895(9), c = 0.37707(4) nm, wR 2 = 0.0498) and YCuIn0.63Al0.37 (a = 0.73404(7), c = 0.39045(4) nm, wR 2 = 0.0314) were refined from the single crystal X-ray diffraction data. Exemplarily the electronic structure of YNiAl was studied, manifesting substantial Ni–Al bonding within the three-dimensional [NiAl] substructure. Comparison of YNiAl with isotypic YNiIn shows stronger Ni–Al bonding as compared to Ni–In. Magnetic susceptibility measurements of YNiIn1−x Al x (x = 0.1, 0.2, 0.7 and 0.9), YNiIn and YNiAl in the temperature range 3–300 K indicated Pauli paramagnetic behaviour with molar magnetic susceptibility of about 0.15–0.22 × 10−3 emu/mol.


Corresponding author: Myroslava Horiacha, Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, 79005 Lviv, Ukraine, E-mail: ,

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Deutsche Forschungsgemeinschaft. M.H. is indebted to DAAD for a research stipend.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chumalo, N., Demchuk, V., Nychyporuk, G., Zaremba, V. Investigation of interaction of the components in R2T2In1−xMx (R = La, Ce; T = Ni, Cu; M = Al, Sn; 0 ≤ x ≤ 1) systems. Visn. Lviv Univ., Ser. Chem. 2010, 51, 24–30.Search in Google Scholar

2. Dominyuk, N., Nychyporuk, G., Muts, I., Pöttgen, R., Zaremba, V. Solubility of p-elements III and IV groups in the Gd2Cu2In compound. Visn. Lviv Univ., Ser. Chem. 2013, 54, 57–63.Search in Google Scholar

3. Kharkhalis, A., Horiacha, M., Nychyporuk, G., Bednarchuk, O., Zaremba, V. Investigation of the components interaction in the RECu2In1−xAlx (RE = Y, La, Gd) systems. Visn. Lviv Univ., Ser. Chem. 2014, 55, 54–62.Search in Google Scholar

4. Horiacha, M., Zinko, L., Nychyporuk, G., Serkiz, R., Zaremba, V. The GdTIn1−xMx (T = Ni, Cu; M = Al, Ga; 0 < x < 1) systems. Visn. Lviv Univ., Ser. Chem. 2017, 58, 77–85.Search in Google Scholar

5. Horiacha, M., Savchuk, I., Nychyporuk, G., Serkiz, R., Zaremba, V. The YNiIn1−xMx (M = Al, Ga, Sb) systems. Visn. Lviv Univ., Ser. Chem. 2018, 59, 67–75; https://doi.org/10.30970/vch.5901.067.Search in Google Scholar

6. Horiacha, M., Rinylo, N., Nychyporuk, G., Serkiz, R., Pöttgen, R., Zaremba, V. The interaction of the components in the YCuIn1−xMx (M = Al, Ga) systems. Ukr. Chem. J. 2018, 84, 31–37.10.30970/vch.5901.067Search in Google Scholar

7. Zaremba, N., Nychyporuk, G., Schepilov, Yu., Panakhyd, O., Muts, I., Hlukhyy, V., Pavlyuk, V. The CeNiIn1−xMx (M = Al, Ga) systems at 873 K. Ukr. Chem. J. 2019, 84, 76–84.Search in Google Scholar

8. Zaremba, N., Nychyporuk, G., Schepilov, Yu., Serkiz, R., Hlukhyy, V., Pavlyuk, V. The interaction of the components in the CeNiIn1−xMx (M = Ge, Sb) systems. Visn. Lviv Univ., Ser. Chem. 2019, 60, 82–90; https://doi.org/10.30970/vch.6001.082.Search in Google Scholar

9. Klicpera, M., Javorský, P., Šantava, E. Magnetic phase transitions in TbNi(Al,In) compounds. Acta Phys. Pol., A 2010, 118, 881–883; https://doi.org/10.12693/aphyspola.118.881.Search in Google Scholar

10. Godnek, Ł., Żukowski, J., Bałanda, M., Kaczorowski, D., Szytuła, A. Magnetism and electronic structures of hexagonal 1:1:1 rare earth-based intermetallic compounds. Mater. Sci. 2008, 26, 815–820.Search in Google Scholar

11. Gupta, S., Suresh, K. G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

12. Brück, E., De Boer, F. R., Nozarh, P., Sechovsky, V., Havela, L., Buschow, K. H. J., Andreev, A. V. Influence of Y, Fe and Co substitutions on electronic properties of UNiAl. Physica B 1990, 163, 379–381.10.1016/0921-4526(90)90217-ISearch in Google Scholar

13. Rayaprol, S., Heying, B., Pöttgen, R. The solid solution CeAuIn1−xMgx – structure, magnetic properties and specific heat data. Z. Naturforsch. 2006, 61b, 495–502; https://doi.org/10.1515/znb-2006-0501.Search in Google Scholar

14. Ehlers, G., Ahlert, D., Ritter, C., Miekeley, W., Maletta, H. Anomalous transition from antiferromagnetic to ferromagnetic order in the pseudoternary series TbNi1−xCuxAl. Europhys. Lett. 1997, 37, 269–274; https://doi.org/10.1209/epl/i1997-00142-5.Search in Google Scholar

15. Zarzycki, A., Szytuła, A. Magnetic properties of Tb1−xYxNiIn system. Acta Phys. Pol., A 2012, 122, 382–383; https://doi.org/10.12693/aphyspola.122.382.Search in Google Scholar

16. Bałanda, M., Penc, B., Baran, S., Jaworska-Golab, T., Arulraj, A., Szytuła, A. Magnetic properties of TbNi1−xAuxIn compounds. Acta Phys. Pol., A 2009, 115, 174–177.10.12693/APhysPolA.115.174Search in Google Scholar

17. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. W. Ternary compounds with the Fe2P-type structure. Trans. Metall. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

18. Ferro, R., Marazza, R., Rambaldi, G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkd. 1974, 65, 37–39; https://doi.org/10.1515/ijmr-1974-650106.Search in Google Scholar

19. Krachan, T., Stelmakhovych, B. M., Kuz’ma, Y. B. The Y-Cu-Al system. J. Alloys Compd. 2003, 349, 134–139; https://doi.org/10.1016/s0925-8388(02)00873-3.Search in Google Scholar

20. Sysa, L. V., Zaremba, V. I., Kalychak, Y. M., Baranyak, V. M. New ternary compounds with indium, rare-earth and 3d metals with MgCu4Sn and ZrNiAl type structure. Visn. Lviv. Derzh. Univ., Ser. Khim. 1988, 29, 32–34.Search in Google Scholar

21. Pöttgen, R., Gulden, T., Simon, A. Miniaturisierte Lichtbogenapparatur für den Laborbedarf. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

22. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69; https://doi.org/10.1016/0921-4526(93)90108-i.Search in Google Scholar

23. Kraus, W., Nolze, G. Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303; https://doi.org/10.1107/s0021889895014920.Search in Google Scholar

24. Krypyakevych, P. I., Markiv, V. Y., Mel’nyk, E. V. The crystal structure of the compounds ZrNiAl, ZrCuGa and their analogue. Dopov. Akad. Navuk URSR, Ser. A 1967, 750–753.Search in Google Scholar

25. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. The intermetallic zirconium compounds ZrNiAl, ZrRhSn, and ZrPtGa – structural distortions and metal-metal bonding in Fe2P related compounds. Z. Naturforsch. 1999, 54b, 45; https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar

26. Palatinus, L. The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

27. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

28. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

29. Flack, H. D., Bernadinelli, G. Absolute structure and absolute configuration. Acta Crystallogr. A 1999, 55, 908–915; https://doi.org/10.1107/s0108767399004262.Search in Google Scholar PubMed

30. Flack, H. D., Bernadinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Search in Google Scholar

31. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central

32. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar

33. Corel Corporation. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar

34. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar

35. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX – standardized data and crystal chemical characterization of inorganic structure types. In Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

36. Zumdick, M. F., Pöttgen, R. Determination of the superstructures for the stannides ZrIrSn, HfCoSn, and HfRhSn. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

37. Pöttgen, R., Chevalier, B. Cerium intermetallics with ZrNiAl-type structure – a review. Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Search in Google Scholar

38. Oesterreicher, H. Structural and magnetic studies on rare-earth compounds RNiAl and RCuAl. J. Less-Common Met. 1973, 30, 225–236; https://doi.org/10.1016/0022-5088(73)90109-4.Search in Google Scholar

39. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar

40. Andersen, O. K., Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar

41. Andersen, O. K., Jepsen, O., Glötzel, D. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M. P., Eds. North-Holland Publishing: New York, 1985.Search in Google Scholar

42. Andersen, O. K., Pawlowska, Z., Jepsen, O. Illustration of the linear-muffin-tin-orbital tight-binding representation: compact orbitals and charge density in Si. Phys. Rev. B 1986, 34, 5253–5269; https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar PubMed

43. Barth, U., von Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar

44. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Łasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Synthesis and crystal structure of new compounds from the Y–Mg–Ni system. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Search in Google Scholar

45. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Fadda, G. Synthesis and crystallochemical characterisation of the intermetallic phases La(AgxMg1−x)12 (0.11 ≤ x ≤ 0.21), LaAg4+xMg2−x (–0.15 ≤ x ≤ 1.05) and LaAg2+xMg2−x (0 < x ≤ 0.45). Eur. J. Inorg. Chem. 2012, 4811–4821; https://doi.org/10.1002/ejic.201200700.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2022-0052).


Received: 2022-08-31
Accepted: 2022-10-17
Published Online: 2022-11-07
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0052/html
Scroll to top button