Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 29, 2017

Two iodine-rich (dimethylphosphoryl)methanaminium iodides

  • Guido J. Reiss EMAIL logo

Abstract

The reaction of dpma (dpma=(dimethylphosphoryl)methanamine) with hydroiodic acid in the presence of an excess of elemental iodine gives red coloured crystals of (dpmaH)3(H3O)I4·1/2I2 (1) as the main product and a small amount of a by-product (dpmaH)2[I3]2·dpma (2). Single crystal structure determinations on both compounds were carried out. In the crystal structure of 1 (space group P3̅, a=12.2166(3) Å, c=10.8788(4) Å, Rgt(F)= 0.0224, wRref(F2)=0.0377), six symmetry related dpmaH+ cations and iodide anions, both located in general positions, form a cage through NH···I hydrogen bonds. These cages are connected to neighbouring ones by H3O+ cations by means of strong OH···O hydrogen bonds, thereby constructing a 2-dimensional network perpendicular to the c direction. In the center of each cage a three-fold disordered I2 molecule is present. This disorder is a consequence of space group symmetry. Each iodine molecule forms two halogen bonds to two adjacent iodide anions (Δ(I···I)=3.2449(7) Å) formally resulting in an almost linear I42− anion. The second iodide counter anion is located alternatively beneath and below the H3O+ cation and is not involved in any stronger hydrogen bonding interaction. The dominant feature of the crystal structure of 2 (space group C2/c, a=28.885(5) Å, b=10.6854(15) Å, c=20.659(4) Å, β=110.64(2)°, Rgt(F)=0.0776, wRref(F2)=0.1410) is a ladder substructure formed by dpmaH cations and neutral dpma molecules via NH···O and NH···N hydrogen bonds. Triiodide counter anions occupy gaps in the ladder. A characteristic Raman signal representing the iodine molecule in the Raman spectrum of 1 is shifted to lower wavenumbers (173 cm−1). It corresponds to an iodine molecule trapped in the cage of a hydrogen bonded network forming medium strong halogen bonds. The Raman spectrum of 2 shows the typical bands of a weakly connected I3 anion.


Dedicated to:

Professor Walter Frank on the occasion of his 60th birthday.


Acknowledgement

I would like to thank Birger Dittrich for fruitful discussions and Elli Hammes for technical support. Furthermore, I gratefully acknowledge support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533-1).

References

[1] P. Coppens, in Extended Linear Chain Compounds, Vol. 1 (Ed. J. S. Miller), Plenum Press, New York, 1982, pp. 333–356.10.1007/978-1-4613-3249-7_7Search in Google Scholar

[2] A. J. Blake, F. A. Devillanova, R. O. Gould, W.S. Li, V. Lippolis, S. Parsons, C. Radek, M. Schröder, Chem. Soc. Rev.1998, 27, 195.10.1039/a827195zSearch in Google Scholar

[3] P. H. Svensson, L. Kloo, Chem. Rev.2003, 103, 1649.10.1021/cr0204101Search in Google Scholar PubMed

[4] A. Peuronen, H. Rinta, M. Lahtinen, CrystEngComm2015, 17, 1736 and references therein.10.1039/C4CE01866DSearch in Google Scholar

[5] P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys.2013, 15, 11178.10.1039/c3cp00054kSearch in Google Scholar PubMed

[6] F. Bella, C. Gerbaldi, C. Barolo, M. Grätzel, Chem. Soc. Rev.2015, 44, 3431.10.1039/C4CS00456FSearch in Google Scholar

[7] Z. Fei, F. D. Bobbink, E. Păunescu, R. Scopelliti, P. J. Dyson, Inorg. Chem.2015, 54, 10504.10.1021/acs.inorgchem.5b02021Search in Google Scholar PubMed

[8] Z. Yin, Q.-X. Wang, M.-H. Zeng, J. Am. Chem. Soc.2012, 134, 4857.10.1021/ja211381eSearch in Google Scholar PubMed

[9] Y.-C. He, J. Yang, G.-C. Yang, W.-Q. Kan, J.-F. Ma, Chem. Commun.2012, 48, 7859.10.1039/c2cc33831aSearch in Google Scholar PubMed

[10] W.-W. He, S.-L. Li, G.-S. Yang, Y.-Q. Lan, Z.-M. Su, Q. Fu, Chem. Commun.2012, 48, 10001.10.1039/c2cc34196dSearch in Google Scholar PubMed

[11] X.-L. Hu, C.-Y. Sun, C. Qin, X.-L. Wang, H.-N. Wang, E.-L. Zhou, W.-E Li, Z.-M. Su, Chem. Commun.2013, 49, 3564.10.1039/c3cc39173fSearch in Google Scholar PubMed

[12] L. Fu, Y. Liu, M. Pan, X.-J. Kuang, C. Yan, K. Li, S.-C. Wie, C.-Y. Su, J. Mater. Chem.2013, A1, 8575.10.1039/c3ta11157aSearch in Google Scholar

[13] H. Sun, P. La, Z. Zhu, W. Liang, B. Yang, A. Li, J. Mater. Sci.2015, 50, 7326.10.1007/s10853-015-9289-1Search in Google Scholar

[14] Z. Yan, Y. Yuan, Y. Tian, D. Zhang, G. Zhu, Angew. Chem. Int. Ed.2015, 54, 12733.10.1002/anie.201503362Search in Google Scholar PubMed

[15] M. Golecki, N. Beyer, G. Steinfeld, V. Lozan, S. Voitekhovich, M. Sehabi, J. Möllmer, H.-J. Krüger, B. Kersting, Angew. Chem. Int. Ed.2014, 53, 9949.10.1002/anie.201405199Search in Google Scholar PubMed

[16] F. Yu, D.-D. Li, L. Cheng, Z. Yin, M.-H. Zeng, M. Kurmoo, Inorg. Chem. 2015, 54, 1655.10.1021/ic502650zSearch in Google Scholar PubMed

[17] G. Massasso, M. Rodriguez-Castillo, J. Long, J. Haines, S. Devautour-Vinot, G. Maurin, A. Grandjean, B. Onida, B. Donnadieu, J. Larionova, C. Guerin, Y. Guari, Dalton Trans. 2015, 44, 19357.10.1039/C5DT02907DSearch in Google Scholar PubMed

[18] G. L. Soloveichik, Chem. Rev.2015, 115, 11533.10.1021/cr500720tSearch in Google Scholar PubMed

[19] B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Nat. Commun.2015, 6, article number: 6303.10.1038/ncomms7303Search in Google Scholar

[20] G. J. Reiss, Crystals2016, 6, 6 (9 pages).Search in Google Scholar

[21] G. J. Reiss, Acta Crystallogr.2013, E69, o1253–o1254.10.1107/S1600536813019004Search in Google Scholar

[22] W.-S. Huang, S. Liu, D. Zou, M. Thomas, Y. Wang, T. Zhou, J. Romero, A. Kohlmann, F. Li, J. Qi, L. Cai, T.A. Dwight, Y. Xu, R. Xu, R. Dodd, A. Toms, L. Parillon, X. Lu, R. Anjum, S. Zhang, F. Wang, J. Keats, S. D. Wardwell, Y. Ning, Q. Xu, L. E. Moran, Q. K. Mohemmad, H. G. Jang, T. Clackson, N. I. Narasimhan, V. M. Rivera, X. Zhu, D. Dalgarno, W. C. Shakespeare, J. Med. Chem.2016, 59, 4948.10.1021/acs.jmedchem.6b00306Search in Google Scholar PubMed

[23] G. J. Reiss, Z. Naturforsch.2015, 70B, 735.10.1515/znb-2015-0092Search in Google Scholar

[24] M. van Megen, A. Jablonka, G. J. Reiss, Z. Naturforsch.2014, 69B, 753.10.5560/znb.2014-4088Search in Google Scholar

[25] G. J. Reiss, J. S. Engel CrystEngComm2002, 4, 155.10.1039/B203499ASearch in Google Scholar

[26] M. van Megen, G. J. Reiss, Inorganics2013, 1, 3.10.3390/inorganics1010003Search in Google Scholar

[27] E. N. Tsvetkov, T. E. Kron, M. I. Kabachnik, Izv. Akad. Nauk. Ser. Khim.1980, 3, 669.Search in Google Scholar

[28] S. G. Varbanov, G. Agopian, G. Borisov, Eur. Polym. J.1987, 23, 639.10.1016/0014-3057(87)90011-5Search in Google Scholar

[29] CrysAlisPro, version 1.171.33.42, Oxford Diffraction Ltd., Oxford, UK, 2009.Search in Google Scholar

[30] G. M. Sheldrick, Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar

[31] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar

[32] Diamond, version 4.3.2., Crystal and Molecular Structure Visualization Crystal Impact - Putz & Brandenburg, Bonn, Germany, 2017Search in Google Scholar

[33] G. J. Reiss, Main Group Met. Chem. 2015, 38, 125 and references therein.10.1515/mgmc-2015-0024Search in Google Scholar

[34] G. J. Reiss, Acta Crystallogr. 2013, E69, m250.10.1107/S1600536813008751Search in Google Scholar

[35] R. G. Delaplane, I. Taesler, I. Olovsson, Acta Crystallogr.1975, B31, 1486.10.1107/S0567740875005493Search in Google Scholar

[36] M. A. Flatken, M. J. Huber, G. J. Reiss Z. Kristallogr. NCS2014, 229, 423.Search in Google Scholar

[37] V. I. Batalov, D. G. Kim, A. Dikhtiarenko, Z. Amghouz, E, V. Bartashevich, S. García-Granda, Z. Kristallogr. NCS2014, 229, 211.Search in Google Scholar

[38] M. Weclawik, A. Gagor, A. Piecha, R. Jakubas, W. Medycki, CrystEngComm 2013, 15, 5633.10.1039/c3ce40559aSearch in Google Scholar

[39] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2010, 636, 515.10.1002/zaac.200900481Search in Google Scholar

[40] M. D. Garcia, J. Marti-Rujas, P. Metrangolo, C. Peinador, T. Pilati, G. Resnati, G. Terraneo, M. Ursini, CrystEngComm2011, 13, 4411.10.1039/c0ce00860eSearch in Google Scholar

[41] J. Grell, J. Bernstein, G. Tinhofer, Crystallogr. Rev. 2002, 8, 1.10.1080/08893110211936Search in Google Scholar

[42] H. Dureckova, T. K. Woo, S. Alavi, J. A. Ripmeester, Can. J. Chem.2015, 93, 864.10.1139/cjc-2014-0593Search in Google Scholar

[43] K. A. Udachin, S. Alavi, J. A. Ripmeester, J. Phys. Chem. C, 2013, 117, 14176.10.1021/jp402399rSearch in Google Scholar

[44] H. S. El-Sheshtawy, B. S. Bassil, K. I. Assaf, U. Kortz, W. M. Nau, J. Am. Chem. Soc.2012, 134, 19935.10.1021/ja3102902Search in Google Scholar

[45] H. Ohtsu, M. Kawano, Dalton Trans.2016, 45, 489.10.1039/C5DT04122HSearch in Google Scholar

[46] D. Buhl, H. Gün, A. Jablonka, G. J. Reiss, Crystals2013, 3, 350.10.3390/cryst3020350Search in Google Scholar

[47] L. J. Basile, P. LaBonville, J. R. Ferraro, J. M. Williams, J. Chem. Phys.1974, 60, 1981.10.1063/1.1681304Search in Google Scholar

[48] P. Deplano, J. R. Ferraro, M. L. Mercuri, E. F. Trogu, Coord. Chem. Rev.1999, 188, 71.10.1016/S0010-8545(98)00238-0Search in Google Scholar

Received: 2017-4-17
Accepted: 2017-5-4
Published Online: 2017-5-29
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2017-2071/html
Scroll to top button