Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 26, 2014

A comparative study of crystallographic van der Waals radii

  • Sheng-Zhi Hu EMAIL logo , Zhao-Hui Zhou , Zhao-Xiong Xie and Beverly E. Robertson

Abstract

Important data sets of crystallographic van der Waals radii covering major portions of the Periodic Table are reviewed, including those originally published in Pauling’s pioneering work in the late 1930s, together with other more recent data sets. The van der Waals radii for rare gases are determined next from short contact distances in crystallographic data, as an illustration of the value of crystal structure databases for the direct determination of van der Waals radii for non-metallic elements. Then, van der Waals radii for the other non-metallic and metallic elements, as presented in the literature and having been determined using various approaches, are compared systematically. Finally, certain outstanding problems related to the derivation and application of van der Waals radii are discussed, and further investigations of crystallographic van der Waals radii are suggested.


Corresponding author: Sheng-Zhi Hu, Department of Chemistry, Xiamen University, Xiamen, China 361005, E-mail:

Acknowledgments

The authors would like to thank Professor S. S. Batsanov of Moscow for his contribution in presenting the valuable monograph “Experimental foundations of structural chemistry”. We are also indebted to Academician Professor Khi-Rui Tsai (also known as Qi-Rui Cai) of Xiamen University for his continuous and stimulating interest in this challenging research, which is dedicated to him on the occasion of his centenarian birthday.

References

[1] R. H. Stokes, The van der Waals radii of gaseous ions of the noble gas structure in relation to hydration energies. J. Am. Chem. Soc. 1964, 86, 979–982.Search in Google Scholar

[2] A. Bondi, van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.Search in Google Scholar

[3] A. Bondi, van der Waals volumes and radii of metals in covalent compounds. J. Phys. Chem. 1966, 70, 3006–3007.Search in Google Scholar

[4] G. B. Bokii, Kristallokhimiya, 3rd ed. Nauka, Moscow, 1971.Search in Google Scholar

[5] P. Hobza, R. Zahradnik, van der Waals systems – molecular orbitals, physical properties, thermodynamics of formation and reactivity. Top. Curr. Chem. 1980, 93, 53–90.Search in Google Scholar

[6] S. S. Batsanov, The atomic radii of the elements. Russ. J. Inorg. Chem. 1991, 36, 1694–1705.Search in Google Scholar

[7] S. Z. Hu, Z. H. Zhou, K. R. Tsai, Average van der Waals radii of atoms in crystals. Acta Phys.-Chim. Sin. 2003, 19, 1073–1077.Search in Google Scholar

[8] D. Sendor, B. P. T. Fokwa, R. Dronskowski, U. Simon, Noble gases influence the conductance of cetineite-type nanoporous semiconductors. Angew. Chem. Int. Ed. 2007, 46, 6372–6375.Search in Google Scholar

[9] S. Z. Hu, Z. X. Xie, Z. H. Zhou, 70 Years of Crystallographic van der Waals radii. 2010, 26, 1795–1800.Search in Google Scholar

[10] S. Alvarez, A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636.Search in Google Scholar

[11] L. Pauling, The Nature of the Chemical Bond. Cornell University Press, NY, 1939.Search in Google Scholar

[12] L. Pauling, P. Pauling, Chemistry. W. H. Freeman Company, San Francisco, 1975.Search in Google Scholar

[13] A. I. Kitaigorodskii, Organic Chemical Crystallography. Consul Bureau, NY, 1961.Search in Google Scholar

[14] Yu. V. Zefirov, Comparative analysis of systems of van der Waals radii. Crystallogr. Reports. 1997, 42 111–116.Search in Google Scholar

[15] A. Gavezzotti, The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic – reactivity. J. Am. Chem. Soc. 1983, 105, 5220–5225.Search in Google Scholar

[16] S. S. Batsanov, Estimation of the van der Waals radii of elements with use of the Morse equation. Russ. J. Inorg. Chem. 1998, 68, 495–500.Search in Google Scholar

[17] S. S. Batsanov, van der Waals radii of elements. Inorg. Mater. 2001, 37, 871–885.Search in Google Scholar

[18] S. S. Batsanov, Experimental foundations of structural chemistry. Moscow University Press, Moscow, 2008.Search in Google Scholar

[19] N. Weiberg, Lehrbuch der anorganischen chemie. Walter de Gruyter, Berlin, 1995.Search in Google Scholar

[20] R. S. Rowland, R. J. Taylor, Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996, 100, 7384–7391.Search in Google Scholar

[21] Z. Z. Yang., E. R. Davidson, Evaluation of a characteristic atomic radius by an Ab initio method. Int. J. Quantum Chem. 1997, 62, 47–53.Search in Google Scholar

[22] P. M. Zorkii, A. A. Stulkin, Program for analysis of intermolecular contacts in organic crystals. Crystallogr. Reports. 2005, 50, 522–527.Search in Google Scholar

[23] J. Starbuck, N. C. Norman, A. G. Orpen, Secondary bonding as a potential design element for crystal engineering. New J. Chem. 1999, 23, 969–972.Search in Google Scholar

[24] S. Nag, K. Banerjee, D. Datta, Estimation of the van der Waals radii of the d-block elements using the concept of bond valence. New J. Chem. 2007, 31, 832–834.Search in Google Scholar

[25] S. Z. Hu, Z. H. Zhou, B. E. Robertson, Consistent approaches to van der Waals radii for the metallic elements. Z. Kristallogr. 2009, 224, 375–383.Search in Google Scholar

[26] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, Consistent van der Waals radii for the whole main group. J. Phys. Chem. A. 2009, 113, 5806–5812.Search in Google Scholar

[27] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Covalent radii revisited. Dalton Trans. 2008, 2832–2838.10.1039/b801115jSearch in Google Scholar PubMed

[28] http://www.ccdc.cam.ac.uk/Products/csd/radii/.Search in Google Scholar

[29] M. A. Tershansy, A. M. Goforth, J. R. Gardinier, M. D. Smith, L. Peterson Jr., H. C. zurLoye, Solvothermal syntheses, high- and low-temperature crystal structures, and thermo–chromic behavior of [1,2-diethyl-3,4,5-trimethyl-pyrazolium]4[Bi4I16] and [1,10-phenanthrolinium][BiI4]·(H2O). Solid State Sci. 2007, 9, 410–420.Search in Google Scholar

[30] H. Iijima, J. B. Dunbar Jr., G. R. Marshall, Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins. 1987, 2, 330–339.Search in Google Scholar

[31] L. M. Rellick, W. Becktel, Comparison of van der Waals and semiempiricalcalcula- tions of the molecular volumes of small molecules and proteins. Biopolymers. 1997, 42, 5422–5432.Search in Google Scholar

[32] A. I. Li, R. Nussionov, A set of van der Waals and Coulomboc radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins. 1998, 32, 111–127.Search in Google Scholar

[33] Yu. V. Zefirov, A. V. Churakov, van der Waals radius of chlorine atom: Statistical studies. Russ. J. Inorg. Chem. 2000, 45, 2032–2034.Search in Google Scholar

[34] L. G. Kuz’mina, Secondary bonds and their role in Chemistry. Russ. J. Coord. Chem. 1999, 25, 643–663.Search in Google Scholar

[35] J. K. Badenhoop, F. Weinhold, Natural steric analysis: Ab initio van der Waals radii of atoms and ions. J. Chem. Phys. 1997, 107, 5422–5432.Search in Google Scholar

[36] P. Pyykkö, M. Straka, Ab initio studies of the dimmers (HgH2)2 and (HgMe2)2. Metallophilic attraction and the van der Waals radii of mercury. Phys. Chem. Chem. Phys. 2000, 2, 2489–2493.Search in Google Scholar

[37] W. H. Mu, G. A. Chasse, D. C. Fang, Test and modification of the van der Waals’ radii employed in the default PCM model. Int. J. Quantum Chem. 2008, 108, 1422–1434.Search in Google Scholar

Received: 2014-1-19
Accepted: 2014-5-8
Published Online: 2014-6-26
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2014-1726/html
Scroll to top button