Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 6, 2022

Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases

  • Wenjia Shi , Cheng Tan , Can Liu and Dan Chen EMAIL logo

Abstract

In recent years, the role of mitochondrial dynamics in neurodegenerative diseases has becoming increasingly important. More and more evidences have shown that in pathological conditions, abnormal mitochondrial divisions, especially Drp1-Fis1-mediated divisions, play an important role in the occurrence and development of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, glaucoma, and other neurodegenerative diseases. This review highlights several new mechanisms of physiological fission of mitochondria and the difference/connection of physiological/pathological mitochondrial fission. In addition, we described the relationship between abnormal mitochondrial dynamics and neurodegenerative diseases in detail and emphatically summarized its detection indicators in basic experiments, trying to provide references for further mechanism exploration and therapeutic targets.


Corresponding author: Dan Chen, Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China, E-mail:

Funding source: the Science and Technology Department of Hunan Province, China

Award Identifier / Grant number: 2021JJ30891

Funding source: the Project of Graduate Independent Exploration and Innovation Plan of Central South University of China

Award Identifier / Grant number: 1053320210359

Acknowledgments

This work was supported by the Project of Graduate Independent Exploration and In-novation Plan of Central South University of China [grant number 1053320210359]; the Science and Technology Department of Hunan Province, China [grant number 2021JJ30891].

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the Science and Technology Department of Hunan Province, China (No. 2021JJ30891) and the Project of Graduate Independent Exploration and Innovation Plan of Central South University of China (No. 1053320210359).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Banerjee, R., Mukherjee, A., and Nagotu, S. (2022). Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J. Mol. Med. (Berl.) 100: 1–21, https://doi.org/10.1007/s00109-021-02150-7.Search in Google Scholar PubMed

Bossy, B., Petrilli, A., Klinglmayr, E., Chen, J., Lütz-Meindl, U., Knott, A.B., Masliah, E., Schwarzenbacher, R., and Bossy-Wetzel, E. (2010). S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J. Alzheimers Dis. 20(Suppl. 2): S513–S526, https://doi.org/10.3233/jad-2010-100552.Search in Google Scholar PubMed PubMed Central

Buck, M.D., O’Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., van der Windt, G.J., et al.. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166: 63–76, https://doi.org/10.1016/j.cell.2016.05.035.Search in Google Scholar PubMed PubMed Central

Calkins, M.J., Manczak, M., Mao, P., Shirendeb, U., and Reddy, P.H. (2011). Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 20: 4515–4529, https://doi.org/10.1093/hmg/ddr381.Search in Google Scholar PubMed PubMed Central

Carter, R.J., Milani, M., Beckett, A.J., Liu, S., Prior, I.A., Cohen, G.M., and Varadarajan, S. (2022). Novel roles of RTN4 and CLIMP-63 in regulating mitochondrial structure, bioenergetics and apoptosis. Cell Death Dis. 13: 436, https://doi.org/10.1038/s41419-022-04869-8.Search in Google Scholar PubMed PubMed Central

Chakrabarti, R., Ji, W.K., Stan, R.V., de Juan Sanz, J., Ryan, T.A., and Higgs, H.N. (2018). INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217: 251–268, https://doi.org/10.1083/jcb.201709111.Search in Google Scholar PubMed PubMed Central

Chang, C.R., Manlandro, C.M., Arnoult, D., Stadler, J., Posey, A.E., Hill, R.B., and Blackstone, C. (2010). A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J. Biol. Chem. 285: 32494–32503, https://doi.org/10.1074/jbc.m110.142430.Search in Google Scholar

Chang, P.C., Cheng, C.Y., Campbell, M., Yang, Y.C., Hsu, H.W., Chang, T.Y., Chu, C.H., Lee, Y.W., Hung, C.L., Lai, S.M., et al.. (2013). The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi’s sarcoma associated herpesvirus reactivation. BMC Genom. 14: 824, https://doi.org/10.1186/1471-2164-14-824.Search in Google Scholar PubMed PubMed Central

Chen, L., Chen, X.Y., Wang, Q.L., Yang, S.J., Zhou, H., Ding, L.S., Qing, L.S., and Luo, P. (2020). Astragaloside IV derivative (LS-102) alleviated myocardial ischemia reperfusion injury by inhibiting drp1(Ser616) phosphorylation-mediated mitochondrial fission. Front. Pharmacol. 11: 1083, https://doi.org/10.3389/fphar.2020.01083.Search in Google Scholar PubMed PubMed Central

Chen, S.D., Lin, T.K., Yang, D.I., Lee, S.Y., Shaw, F.Z., Liou, C.W., and Chuang, Y.C. (2015). Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury. Biochem. Biophys. Res. Commun. 460: 397–403, https://doi.org/10.1016/j.bbrc.2015.03.045.Search in Google Scholar PubMed

Chen, Y., Gong, K., Xu, Q., Meng, J., Long, T., Chang, C., Wang, Z., and Liu, W. (2021). Phosphoglycerate mutase 5 knockdown alleviates neuronal injury after traumatic brain injury through drp1-mediated mitochondrial dysfunction. Antioxidants Redox Signal. 34: 154–170, https://doi.org/10.1089/ars.2019.7982.Search in Google Scholar PubMed

Cheng, D., Su, L., Wang, X., Li, X., Li, L., Hu, M., and Lu, Y. (2021). Extract of cynomorium songaricum ameliorates mitochondrial ultrastructure impairments and dysfunction in two different in vitro models of Alzheimer’s disease. BMC Complement. Med. Ther. 21: 206, https://doi.org/10.1186/s12906-021-03375-2.Search in Google Scholar PubMed PubMed Central

Cheng, X.T., Huang, N., and Sheng, Z.H. (2022). Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110: 1899–1923, https://doi.org/10.1016/j.neuron.2022.03.015.Search in Google Scholar PubMed PubMed Central

Cherok, E., Xu, S., Li, S., Das, S., Meltzer, W.A., Zalzman, M., Wang, C., and Karbowski, M. (2017). Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol. Biol. Cell 28: 396–410, https://doi.org/10.1091/mbc.e16-04-0208.Search in Google Scholar PubMed PubMed Central

Cho, B., Choi, S.Y., Cho, H.M., Kim, H.J., and Sun, W. (2013). Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp. Neurobiol. 22: 149–157, https://doi.org/10.5607/en.2013.22.3.149.Search in Google Scholar PubMed PubMed Central

Cho, H.M., Ryu, J.R., Jo, Y., Seo, T.W., Choi, Y.N., Kim, J.H., Chung, J.M., Cho, B., Kang, H.C., Yu, S.W., et al.. (2019). Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73: 364–376 e368, https://doi.org/10.1016/j.molcel.2018.11.009.Search in Google Scholar PubMed

Choi, S.Y., Kim, J.Y., Kim, H.W., Cho, B., Cho, H.M., Oppenheim, R.W., Kim, H., Rhyu, I.J., and Sun, W. (2013). Drp1-mediated mitochondrial dynamics and survival of developing chick motoneurons during the period of normal programmed cell death. Faseb. J. 27: 51–62, https://doi.org/10.1096/fj.12-211920.Search in Google Scholar PubMed PubMed Central

Chou, C.H., Lin, C.C., Yang, M.C., Wei, C.C., Liao, H.D., Lin, R.C., Tu, W.Y., Kao, T.C., Hsu, C.M., Cheng, J.T., et al.. (2012). GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7: e49112, https://doi.org/10.1371/journal.pone.0049112.Search in Google Scholar PubMed PubMed Central

Cid-Castro, C. and Morán, J. (2021). Differential ROS-mediated phosphorylation of Drp1 in mitochondrial fragmentation induced by distinct cell death conditions in cerebellar granule neurons. Oxid. Med. Cell. Longev. 2021: 8832863, https://doi.org/10.1155/2021/8832863.Search in Google Scholar PubMed PubMed Central

Ciriegio, A.E., Watson, K.H., Pfalzer, A.C., Hale, L., Huitz, E., Moroz, S., Roth, M.C., Snow, A.L.B., Jones, M.T., Guthrie, C.S., et al.. (2022). Inhibitory control, working memory and coping with stress: associations with symptoms of anxiety and depression in adults with Huntington’s disease. Neuropsychology 36: 288–296, https://doi.org/10.1037/neu0000793.Search in Google Scholar PubMed PubMed Central

Collier, J.J. and Taylor, R.W. (2021). Machine learning algorithms reveal the secrets of mitochondrial dynamics. EMBO Mol. Med. 13: e14316, https://doi.org/10.15252/emmm.202114316.Search in Google Scholar PubMed PubMed Central

Correia, S.C., Alves, M.G., Oliveira, P.F., Casadesus, G., LaManna, J., Perry, G., and Moreira, P.I. (2022). Hypoxic preconditioning averts sporadic Alzheimer’s disease-like phenotype in rats: a focus on mitochondria. Antioxidants Redox Signal 37: 739–757, https://doi.org/10.1089/ars.2019.8007.Search in Google Scholar PubMed

Cui, M., Tang, X., Christian, W.V., Yoon, Y., and Tieu, K. (2010). Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J. Biol. Chem. 285: 11740–11752, https://doi.org/10.1074/jbc.m109.066662.Search in Google Scholar PubMed PubMed Central

Dai, W. and Jiang, L. (2019). Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front. Endocrinol. 10: 570, https://doi.org/10.3389/fendo.2019.00570.Search in Google Scholar PubMed PubMed Central

Devinney, M.J., Malaiyandi, L.M., Vergun, O., DeFranco, D.B., Hastings, T.G., and Dineley, K.E. (2009). A comparison of Zn2+- and Ca2+-triggered depolarization of liver mitochondria reveals no evidence of Zn2+-induced permeability transition. Cell Calcium 45: 447–455, https://doi.org/10.1016/j.ceca.2009.03.002.Search in Google Scholar PubMed PubMed Central

Dhiman, A., Handa, M., Ruwali, M., Singh, D.P., Kesharwani, P., and Shukla, R. (2022). Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion 64: 112–124, https://doi.org/10.1016/j.mito.2022.03.006.Search in Google Scholar PubMed

Dickey, A.S. and Strack, S. (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J. Neurosci. 31: 15716–15726, https://doi.org/10.1523/jneurosci.3159-11.2011.Search in Google Scholar

Edwards, G., Perkins, G.A., Kim, K.Y., Kong, Y., Lee, Y., Choi, S.H., Liu, Y., Skowronska-Krawczyk, D., Weinreb, R.N., Zangwill, L., et al.. (2020). Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis. 11: 254, https://doi.org/10.1038/s41419-020-2456-6.Search in Google Scholar PubMed PubMed Central

Eldeeb, M.A., Thomas, R.A., Ragheb, M.A., Fallahi, A., and Fon, E.A. (2022). Mitochondrial quality control in health and in Parkinson’s disease. Physiol. Rev 102: 1721–1755, https://doi.org/10.1152/physrev.00041.2021.Search in Google Scholar PubMed

Elu, N., Osinalde, N., Beaskoetxea, J., Ramirez, J., Lectez, B., Aloria, K., Rodriguez, J.A., Arizmendi, J.M., and Mayor, U. (2019). Detailed dissection of UBE3A-mediated DDI1 ubiquitination. Front. Physiol. 10: 534, https://doi.org/10.3389/fphys.2019.00534.Search in Google Scholar PubMed PubMed Central

Fan, Q., Wang, Q., Cai, R., Yuan, H., and Xu, M. (2020). The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer. Cell. Mol. Biol. Lett. 25: 1, https://doi.org/10.1186/s11658-019-0193-6.Search in Google Scholar PubMed PubMed Central

Fang, L., Hemion, C., Goldblum, D., Meyer, P., Orgul, S., Frank, S., Flammer, J., and Neutzner, A. (2012). Inactivation of MARCH5 prevents mitochondrial fragmentation and interferes with cell death in a neuronal cell model. PLoS One 7: e52637, https://doi.org/10.1371/journal.pone.0052637.Search in Google Scholar PubMed PubMed Central

Feng, S.T., Wang, Z.Z., Yuan, Y.H., Wang, X.L., Guo, Z.Y., Hu, J.H., Yan, X., Chen, N.H., and Zhang, Y. (2021). Inhibition of dynamin-related protein 1 ameliorates the mitochondrial ultrastructure via PINK1 and Parkin in the mice model of Parkinson’s disease. Eur. J. Pharmacol. 907: 174262, https://doi.org/10.1016/j.ejphar.2021.174262.Search in Google Scholar PubMed

Flippo, K.H., Gnanasekaran, A., Perkins, G.A., Ajmal, A., Merrill, R.A., Dickey, A.S., Taylor, S.S., McKnight, G.S., Chauhan, A.K., Usachev, Y.M., et al.. (2018). AKAP1 protects from cerebral ischemic stroke by inhibiting drp1-dependent mitochondrial fission. J. Neurosci. 38: 8233–8242, https://doi.org/10.1523/jneurosci.0649-18.2018.Search in Google Scholar

Fonseca, T.B., Sanchez-Guerrero, A., Milosevic, I., and Raimundo, N. (2019). Mitochondrial fission requires DRP1 but not dynamins. Nature 570: E34–E42, https://doi.org/10.1038/s41586-019-1296-y.Search in Google Scholar PubMed

Ford, M.G., Jenni, S., and Nunnari, J. (2011). The crystal structure of dynamin. Nature 477: 561–566, https://doi.org/10.1038/nature10441.Search in Google Scholar PubMed PubMed Central

Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J., and Voeltz, G.K. (2011). ER tubules mark sites of mitochondrial division. Science 334: 358–362, https://doi.org/10.1126/science.1207385.Search in Google Scholar PubMed PubMed Central

Gai, C., Feng, W.D., Qiang, T.Y., Ma, H.J., Chai, Y., Zhang, S.J., Guo, Z.Y., Hu, J.H., and Sun, H.M. (2019). Da-Bu-Yin-Wan and Qian-Zheng-san ameliorate mitochondrial dynamics in the Parkinson’s disease cell model induced by MPP. Front. Pharmacol. 10: 372, https://doi.org/10.3389/fphar.2019.00372.Search in Google Scholar PubMed PubMed Central

Gao, J., Wang, L., Liu, J., Xie, F., Su, B., and Wang, X. (2017). Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel) 6: 25.10.3390/antiox6020025Search in Google Scholar PubMed PubMed Central

Gehlert, S., Klinz, F.J., Willkomm, L., Schiffer, T., Suhr, F., and Bloch, W. (2016). Intense resistance exercise promotes the acute and transient nuclear translocation of small ubiquitin-related modifier (SUMO)-1 in human myofibres. Int. J. Mol. Sci. 17: 646, https://doi.org/10.3390/ijms17050646.Search in Google Scholar PubMed PubMed Central

Godoy, J.A., Arrázola, M.S., Ordenes, D., Silva-Alvarez, C., Braidy, N., and Inestrosa, N.C. (2014). Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J. Biol. Chem. 289: 36179–36193, https://doi.org/10.1074/jbc.m114.557009.Search in Google Scholar PubMed PubMed Central

Guo, C., Hildick, K.L., Luo, J., Dearden, L., Wilkinson, K.A., and Henley, J.M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 32: 1514–1528, https://doi.org/10.1038/emboj.2013.65.Search in Google Scholar PubMed PubMed Central

Hang, L., Thundyil, J., and Lim, K.L. (2015). Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann. N. Y. Acad. Sci. 1350: 37–47, https://doi.org/10.1111/nyas.12820.Search in Google Scholar PubMed

Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., et al.. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7: 665–674, https://doi.org/10.1038/ncb1268.Search in Google Scholar PubMed

Haun, F., Nakamura, T., Shiu, A.D., Cho, D.H., Tsunemi, T., Holland, E.A., La Spada, A.R., and Lipton, S.A. (2013). S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxidants Redox Signal. 19: 1173–1184, https://doi.org/10.1089/ars.2012.4928.Search in Google Scholar PubMed PubMed Central

He, Z., Huang, T., Ao, K., Yan, X., and Huang, Y. (2017). Sumoylation, phosphorylation, and acetylation fine-tune the turnover of plant immunity components mediated by ubiquitination. Front. Plant Sci. 8: 1682, https://doi.org/10.3389/fpls.2017.01682.Search in Google Scholar PubMed PubMed Central

Hollis, F., van der Kooij, M.A., Zanoletti, O., Lozano, L., Cantó, C., and Sandi, C. (2015). Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl. Acad. Sci. U. S. A. 112: 15486–15491, https://doi.org/10.1073/pnas.1512653112.Search in Google Scholar PubMed PubMed Central

Hoppins, S., Lackner, L., and Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76: 751–780, https://doi.org/10.1146/annurev.biochem.76.071905.090048.Search in Google Scholar PubMed

Huang, J., Xie, P., Dong, Y., and An, W. (2021). Inhibition of Drp1 SUMOylation by ALR protects the liver from ischemia-reperfusion injury. Cell Death Differ. 28: 1174–1192, https://doi.org/10.1038/s41418-020-00641-7.Search in Google Scholar PubMed PubMed Central

Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S.O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., et al.. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11: 958–966, https://doi.org/10.1038/ncb1907.Search in Google Scholar PubMed

Jetto, C.T., Nambiar, A., and Manjithaya, R. (2022). Mitophagy and neurodegeneration: between the knowns and the unknowns. Front. Cell Dev. Biol. 10: 837337, https://doi.org/10.3389/fcell.2022.837337.Search in Google Scholar PubMed PubMed Central

Ji, W.K., Chakrabarti, R., Fan, X., Schoenfeld, L., Strack, S., and Higgs, H.N. (2017). Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. J. Cell Biol. 216: 4123–4139, https://doi.org/10.1083/jcb.201610057.Search in Google Scholar PubMed PubMed Central

Jiao, Y., Zheng, Y., and Song, C.J. (2020). Protective effect of edaravone on balance of mitochondrial fusion and fission in MPP(+)-treated PC12 cells. Sheng Li Xue Bao 72: 249–254.Search in Google Scholar

Joshi, A.U., Ebert, A.E., Haileselassie, B., and Mochly-Rosen, D. (2019). Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington’s disease. J. Mol. Cell. Cardiol. 127: 125–133, https://doi.org/10.1016/j.yjmcc.2018.12.004.Search in Google Scholar PubMed PubMed Central

Joshi, A.U., Kornfeld, O.S., and Mochly-Rosen, D. (2016). The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: a tangled duo unchained. Cell Calcium 60: 218–234, https://doi.org/10.1016/j.ceca.2016.04.010.Search in Google Scholar PubMed PubMed Central

Joshi, A.U. and Mochly-Rosen, D. (2018). Mortal engines: mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol. Res. 138: 2–15, https://doi.org/10.1016/j.phrs.2018.08.010.Search in Google Scholar PubMed PubMed Central

Joshi, A.U., Saw, N.L., Shamloo, M., and Mochly-Rosen, D. (2018a). Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget 9: 6128–6143, https://doi.org/10.18632/oncotarget.23640.Search in Google Scholar PubMed PubMed Central

Joshi, A.U., Saw, N.L., Vogel, H., Cunnigham, A.D., Shamloo, M., and Mochly-Rosen, D. (2018b). Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol. Med. 10, https://doi.org/10.15252/emmm.201708166.Search in Google Scholar PubMed PubMed Central

Ju, W.K., Liu, Q., Kim, K.Y., Crowston, J.G., Lindsey, J.D., Agarwal, N., Ellisman, M.H., Perkins, G.A., and Weinreb, R.N. (2007). Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest. Ophthalmol. Vis. Sci. 48: 2145–2151, https://doi.org/10.1167/iovs.06-0573.Search in Google Scholar PubMed

Kamerkar, S.C., Kraus, F., Sharpe, A.J., Pucadyil, T.J., and Ryan, M.T. (2018). Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9: 5239, https://doi.org/10.1038/s41467-018-07543-w.Search in Google Scholar PubMed PubMed Central

Kandimalla, R., Manczak, M., Fry, D., Suneetha, Y., Sesaki, H., and Reddy, P.H. (2016). Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum. Mol. Genet. 25: 4881–4897, https://doi.org/10.1093/hmg/ddw312.Search in Google Scholar PubMed PubMed Central

Kang, T.C. (2020). Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants (Basel) 9: 617.10.3390/antiox9070617Search in Google Scholar PubMed PubMed Central

Ke, T., Gonçalves, F.M., Gonçalves, C.L., Dos Santos, A.A., Rocha, J.B.T., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A.B., and Aschner, M. (2019). Post-translational modifications in MeHg-induced neurotoxicity. Biochim. Biophys. Acta, Mol. Basis Dis. 1865: 2068–2081, https://doi.org/10.1016/j.bbadis.2018.10.024.Search in Google Scholar PubMed PubMed Central

Kim, K.Y., Perkins, G.A., Shim, M.S., Bushong, E., Alcasid, N., Ju, S., Ellisman, M.H., Weinreb, R.N., and Ju, W.K. (2015). DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis. 6: e1839, https://doi.org/10.1038/cddis.2015.180.Search in Google Scholar PubMed PubMed Central

Kim, Y.Y., Um, J.H., Yoon, J.H., Lee, D.Y., Lee, Y.J., Kim, D.H., Park, J.I., and Yun, J. (2020). p53 regulates mitochondrial dynamics by inhibiting Drp1 translocation into mitochondria during cellular senescence. Faseb. J. 34: 2451–2464, https://doi.org/10.1096/fj.201901747rr.Search in Google Scholar PubMed

Kleele, T., Rey, T., Winter, J., Zaganelli, S., Mahecic, D., Perreten Lambert, H., Ruberto, F.P., Nemir, M., Wai, T., Pedrazzini, T., et al.. (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593: 435–439, https://doi.org/10.1038/s41586-021-03510-6.Search in Google Scholar PubMed

Kornfeld, O.S., Qvit, N., Haileselassie, B., Shamloo, M., Bernardi, P., and Mochly-Rosen, D. (2018). Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci. Rep. 8: 14034, https://doi.org/10.1038/s41598-018-32228-1.Search in Google Scholar PubMed PubMed Central

Korobova, F., Ramabhadran, V., and Higgs, H.N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339: 464–467, https://doi.org/10.1126/science.1228360.Search in Google Scholar PubMed PubMed Central

Kumar, S., Reddy, A.P., Yin, X., and Reddy, P.H. (2019). Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease. Biochim. Biophys. Acta, Mol. Basis Dis. 1865: 2428–2440, https://doi.org/10.1016/j.bbadis.2019.06.006.Search in Google Scholar PubMed PubMed Central

Lee, D.G., Min, J.S., Lee, H.S., and Lee, D.S. (2018). Isoliquiritigenin attenuates glutamate-induced mitochondrial fission via calcineurin-mediated Drp1 dephosphorylation in HT22 hippocampal neuron cells. Neurotoxicology 68: 133–141, https://doi.org/10.1016/j.neuro.2018.07.011.Search in Google Scholar PubMed

Lee, D.G., Nam, B.R., Huh, J.W., and Lee, D.S. (2021). Isoliquiritigenin reduces LPS-induced inflammation by preventing mitochondrial fission in BV-2 microglial cells. Inflammation 44: 714–724, https://doi.org/10.1007/s10753-020-01370-2.Search in Google Scholar PubMed

Lee, D.G., Park, J., Lee, H.S., Lee, S.R., and Lee, D.S. (2016a). Iron overload-induced calcium signals modulate mitochondrial fragmentation in HT-22 hippocampal neuron cells. Toxicology 365: 17–24, https://doi.org/10.1016/j.tox.2016.07.022.Search in Google Scholar PubMed

Lee, J.E., Westrate, L.M., Wu, H., Page, C., and Voeltz, G.K. (2016b). Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540: 139–143, https://doi.org/10.1038/nature20555.Search in Google Scholar PubMed PubMed Central

Lee, S.B. and Yang, H.O. (2022). Sinapic acid ameliorates REV-ERB α modulated mitochondrial fission against MPTP-induced Parkinson’s disease model. Biomol Ther (Seoul) 30: 409–417. https://doi.org/10.4062/biomolther.2022.020.Search in Google Scholar PubMed PubMed Central

Lee, W.C., Chau, Y.Y., Ng, H.Y., Chen, C.H., Wang, P.W., Liou, C.W., Lin, T.K., and Chen, J.B. (2019). Empagliflozin protects HK-2 cells from high glucose-mediated injuries via a mitochondrial mechanism. Cells 8: 1085.10.3390/cells8091085Search in Google Scholar PubMed PubMed Central

Li, F., Fan, X., Zhang, Y., Zhang, Y., Ma, X., Kou, J., and Yu, B. (2018). Inhibition of myosin IIA-actin interaction prevents ischemia/reperfusion induced cardiomyocytes apoptosis through modulating PINK1/Parkin pathway and mitochondrial fission. Int. J. Cardiol. 271: 211–218, https://doi.org/10.1016/j.ijcard.2018.04.079.Search in Google Scholar PubMed

Li, H.N., Zimmerman, M., Milledge, G.Z., Hou, X.L., Cheng, J., Wang, Z.H., and Li, P.A. (2017a). Water-soluble coenzyme Q10 reduces rotenone-induced mitochondrial fission. Neurochem. Res. 42: 1096–1103, https://doi.org/10.1007/s11064-016-2143-2.Search in Google Scholar PubMed

Li, S., Sun, X., Xu, L., Sun, R., Ma, Z., Deng, X., Liu, B., Fu, Q., Qu, R., and Ma, S. (2017b). Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK. Eur. J. Pharmacol. 815: 118–126, https://doi.org/10.1016/j.ejphar.2017.07.041.Search in Google Scholar PubMed

Liu, H., Ho, P.W., Leung, C.T., Pang, S.Y., Chang, E.E.S., Choi, Z.Y., Kung, M.H., Ramsden, D.B., and Ho, S.L. (2020). Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2(R1441G) mice. Autophagy 17: 3196–3220, https://doi.org/10.1080/15548627.2020.1850008.Search in Google Scholar PubMed PubMed Central

Liu, H., Mao, P., Wang, J., Wang, T., and Xie, C.H. (2015). Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell. Physiol. Biochem. 36: 966–979, https://doi.org/10.1159/000430271.Search in Google Scholar PubMed

Liu, R. and Chan, D.C. (2015). The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol. Biol. Cell 26: 4466–4477, https://doi.org/10.1091/mbc.e15-08-0591.Search in Google Scholar PubMed PubMed Central

Liu, W., Yamashita, T., Tian, F., Morimoto, N., Ikeda, Y., Deguchi, K., and Abe, K. (2013). Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis. Curr. Neurovascular Res. 10: 222–230, https://doi.org/10.2174/15672026113109990060.Search in Google Scholar PubMed

Loson, O.C., Song, Z., Chen, H., and Chan, D.C. (2013). Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24: 659–667, https://doi.org/10.1091/mbc.e12-10-0721.Search in Google Scholar PubMed PubMed Central

Luo, T.T., Dai, C.Q., Wang, J.Q., Wang, Z.M., Yang, Y., Zhang, K.L., Wu, F.F., Yang, Y.L., and Wang, Y.Y. (2020). Drp1 is widely, yet heterogeneously, distributed in the mouse central nervous system. Mol. Brain 13: 90, https://doi.org/10.1186/s13041-020-00628-y.Search in Google Scholar PubMed PubMed Central

Macdonald, P.J., Stepanyants, N., Mehrotra, N., Mears, J.A., Qi, X., Sesaki, H., and Ramachandran, R. (2014). A dimeric equilibrium intermediate nucleates Drp1 reassembly on mitochondrial membranes for fission. Mol. Biol. Cell 25: 1905–1915, https://doi.org/10.1091/mbc.e14-02-0728.Search in Google Scholar PubMed PubMed Central

Manczak, M., Calkins, M.J., and Reddy, P.H. (2011). Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet. 20: 2495–2509, https://doi.org/10.1093/hmg/ddr139.Search in Google Scholar PubMed PubMed Central

Manczak, M., Kandimalla, R., Fry, D., Sesaki, H., and Reddy, P.H. (2016). Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum. Mol. Genet. 25: 5148–5166, https://doi.org/10.1093/hmg/ddw330.Search in Google Scholar PubMed PubMed Central

Manczak, M., Kandimalla, R., Yin, X., and Reddy, P.H. (2019). Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum. Mol. Genet. 28: 177–199, https://doi.org/10.1093/hmg/ddy335.Search in Google Scholar PubMed PubMed Central

Manczak, M. and Reddy, P.H. (2012). Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 21: 2538–2547, https://doi.org/10.1093/hmg/dds072.Search in Google Scholar PubMed PubMed Central

Merrill, R.A., Slupe, A.M., and Strack, S. (2013). N-terminal phosphorylation of protein phosphatase 2A/Bβ2 regulates translocation to mitochondria, dynamin-related protein 1 dephosphorylation, and neuronal survival. FEBS J. 280: 662–673, https://doi.org/10.1111/j.1742-4658.2012.08631.x.Search in Google Scholar PubMed PubMed Central

Nagashima, S., Tábara, L.C., Tilokani, L., Paupe, V., Anand, H., Pogson, J.H., Zunino, R., McBride, H.M., and Prudent, J. (2020). Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367: 1366–1371, https://doi.org/10.1126/science.aax6089.Search in Google Scholar PubMed

Nakamura, T. and Lipton, S.A. (2011). Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ. 18: 1478–1486, https://doi.org/10.1038/cdd.2011.65.Search in Google Scholar PubMed PubMed Central

Nakamura, T., Oh, C.K., Liao, L., Zhang, X., Lopez, K.M., Gibbs, D., Deal, A.K., Scott, H.R., Spencer, B., Masliah, E., et al.. (2021). Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer’s disease. Science 371: eaaw0843, https://doi.org/10.1126/science.aaw0843.Search in Google Scholar PubMed PubMed Central

Nakamura, T., Prikhodko, O.A., Pirie, E., Nagar, S., Akhtar, M.W., Oh, C.K., McKercher, S.R., Ambasudhan, R., Okamoto, S., and Lipton, S.A. (2015). Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol. Dis. 84: 99–108, https://doi.org/10.1016/j.nbd.2015.03.017.Search in Google Scholar PubMed PubMed Central

Navaratnarajah, T., Anand, R., Reichert, A.S., and Distelmaier, F. (2021). The relevance of mitochondrial morphology for human disease. Int. J. Biochem. Cell Biol. 134: 105951, https://doi.org/10.1016/j.biocel.2021.105951.Search in Google Scholar PubMed

Ni, X.X., Nie, J., Xie, Q.Y., Yu, R.H., Su, L., and Liu, Z.F. (2020). Protective effects of hyperbaric oxygen therapy on brain injury by regulating the phosphorylation of Drp1 through ROS/PKC pathway in heatstroke rats. Cell. Mol. Neurobiol. 40: 1253–1269, https://doi.org/10.1007/s10571-020-00811-8.Search in Google Scholar PubMed

Okamoto, K. and Shaw, J.M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39: 503–536, https://doi.org/10.1146/annurev.genet.38.072902.093019.Search in Google Scholar PubMed

Oliver, D.M.A. and Reddy, P.H. (2019). Molecular basis of Alzheimer’s disease: focus on mitochondria. J. Alzheimers Dis. 72: S95–S116, https://doi.org/10.3233/jad-190048.Search in Google Scholar

Otera, H., Miyata, N., Kuge, O., and Mihara, K. (2016). Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212: 531–544, https://doi.org/10.1083/jcb.201508099.Search in Google Scholar PubMed PubMed Central

Otera, H., Wang, C., Cleland, M.M., Setoguchi, K., Yokota, S., Youle, R.J., and Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191: 1141–1158, https://doi.org/10.1083/jcb.201007152.Search in Google Scholar PubMed PubMed Central

Pagliuso, A., Cossart, P., and Stavru, F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell. Mol. Life Sci. 75: 355–374, https://doi.org/10.1007/s00018-017-2603-0.Search in Google Scholar PubMed PubMed Central

Pakpian, N., Phopin, K., Kitidee, K., Govitrapong, P., and Wongchitrat, P. (2020). Alterations in mitochondrial dynamic-related genes in the peripheral blood of Alzheimer’s disease patients. Curr. Alzheimer Res. 17: 616–625, https://doi.org/10.2174/1567205017666201006162538.Search in Google Scholar PubMed

Palmer, C.S., Osellame, L.D., Laine, D., Koutsopoulos, O.S., Frazier, A.E., and Ryan, M.T. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12: 565–573, https://doi.org/10.1038/embor.2011.54.Search in Google Scholar PubMed PubMed Central

Park, J., Lee, D.G., Kim, B., Park, S.J., Kim, J.H., Lee, S.R., Chang, K.T., Lee, H.S., and Lee, D.S. (2015). Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells. Toxicology 337: 39–46, https://doi.org/10.1016/j.tox.2015.08.009.Search in Google Scholar PubMed

Park, S.W., Kim, K.Y., Lindsey, J.D., Dai, Y., Heo, H., Nguyen, D.H., Ellisman, M.H., Weinreb, R.N., and Ju, W.K. (2011). A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Invest. Ophthalmol. Vis. Sci. 52: 2837–2843, https://doi.org/10.1167/iovs.09-5010.Search in Google Scholar PubMed PubMed Central

Park, Y.Y., Lee, S., Karbowski, M., Neutzner, A., Youle, R.J., and Cho, H. (2010). Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123: 619–626, https://doi.org/10.1242/jcs.061481.Search in Google Scholar PubMed PubMed Central

Park, Y.Y., Nguyen, O.T., Kang, H., and Cho, H. (2014). MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis. 5: e1172, https://doi.org/10.1038/cddis.2014.142.Search in Google Scholar PubMed PubMed Central

Peng, K., Yang, L., Wang, J., Ye, F., Dan, G., Zhao, Y., Cai, Y., Cui, Z., Ao, L., Liu, J., et al.. (2017). The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1alpha regulates rotenone-induced dopaminergic neurotoxicity. Mol. Neurobiol. 54: 3783–3797, https://doi.org/10.1007/s12035-016-9944-9.Search in Google Scholar PubMed

Petrozziello, T., Bordt, E.A., Mills, A.N., Kim, S.E., Sapp, E., Devlin, B.A., Obeng-Marnu, A.A., Farhan, S.M.K., Amaral, A.C., Dujardin, S., et al.. (2022). Targeting tau mitigates mitochondrial fragmentation and oxidative stress in amyotrophic lateral sclerosis. Mol. Neurobiol. 59: 683–702, https://doi.org/10.1007/s12035-021-02557-w.Search in Google Scholar PubMed

Pfluger, P.T., Kabra, D.G., Aichler, M., Schriever, S.C., Pfuhlmann, K., García, V.C., Lehti, M., Weber, J., Kutschke, M., Rozman, J., et al.. (2015). Calcineurin links mitochondrial elongation with energy metabolism. Cell Metabol. 22: 838–850, https://doi.org/10.1016/j.cmet.2015.08.022.Search in Google Scholar PubMed

Pickles, S., Semmler, S., Broom, H.R., Destroismaisons, L., Legroux, L., Arbour, N., Meiering, E., Cashman, N.R., and Vande Velde, C. (2016). ALS-linked misfolded SOD1 species have divergent impacts on mitochondria. Acta Neuropathol. Commun. 4: 43, https://doi.org/10.1186/s40478-016-0313-8.Search in Google Scholar PubMed PubMed Central

Plewes, M.R., Hou, X., Talbott, H.A., Zhang, P., Wood, J.R., Cupp, A.S., and Davis, J.S. (2020). Luteinizing hormone regulates the phosphorylation and localization of the mitochondrial effector dynamin-related protein-1 (DRP1) and steroidogenesis in the bovine corpus luteum. Faseb. J. 34: 5299–5316, https://doi.org/10.1096/fj.201902958r.Search in Google Scholar

Pradeepkiran, J.A., Hindle, A., Kshirsagar, S., and Reddy, P.H. (2022). Are mitophagy enhancers therapeutic targets for Alzheimer’s disease? Biomed. Pharmacother. 149: 112918, https://doi.org/10.1016/j.biopha.2022.112918.Search in Google Scholar PubMed PubMed Central

Pradeepkiran, J.A. and Reddy, P.H. (2020). Defective mitophagy in Alzheimer’s disease. Ageing Res. Rev. 64: 101191, https://doi.org/10.1016/j.arr.2020.101191.Search in Google Scholar PubMed PubMed Central

Qasim, W., Li, Y., Sun, R.M., Feng, D.C., Wang, Z.Y., Liu, D.S., Yao, J.H., and Tian, X.F. (2020). PTEN-induced kinase 1-induced dynamin-related protein 1 Ser637 phosphorylation reduces mitochondrial fission and protects against intestinal ischemia reperfusion injury. World J. Gastroenterol. 26: 1758–1774, https://doi.org/10.3748/wjg.v26.i15.1758.Search in Google Scholar PubMed PubMed Central

Qi, X., Qvit, N., Su, Y.C., and Mochly-Rosen, D. (2013). A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 126: 789–802.10.1242/jcs.114439Search in Google Scholar PubMed PubMed Central

Qi, Z., Huang, Z., Xie, F., and Chen, L. (2019). Dynamin-related protein 1: a critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J. Cell. Physiol. 234: 10032–10046, https://doi.org/10.1002/jcp.27866.Search in Google Scholar PubMed

Rappold, P.M., Cui, M., Grima, J.C., Fan, R.Z., de Mesy-Bentley, K.L., Chen, L., Zhuang, X., Bowers, W.J., and Tieu, K. (2014). Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat. Commun. 5: 5244, https://doi.org/10.1038/ncomms6244.Search in Google Scholar PubMed PubMed Central

Reddy, P.H., Reddy, T.P., Manczak, M., Calkins, M.J., Shirendeb, U., and Mao, P. (2011). Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev. 67: 103–118, https://doi.org/10.1016/j.brainresrev.2010.11.004.Search in Google Scholar PubMed PubMed Central

Reddy, P.H., Yin, X., Manczak, M., Kumar, S., Pradeepkiran, J.A., Vijayan, M., and Reddy, A.P. (2018). Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum. Mol. Genet. 27: 2502–2516, https://doi.org/10.1093/hmg/ddy154.Search in Google Scholar PubMed PubMed Central

Reiss, A.B., Ahmed, S., Dayaramani, C., Glass, A.D., Gomolin, I.H., Pinkhasov, A., Stecker, M.M., Wisniewski, T., and De Leon, J. (2022). The role of mitochondrial dysfunction in Alzheimer’s disease: a potential pathway to treatment. Exp. Gerontol. 164: 111828, https://doi.org/10.1016/j.exger.2022.111828.Search in Google Scholar PubMed

Rong, R., Xia, X., Peng, H., Li, H., You, M., Liang, Z., Yao, F., Yao, X., Xiong, K., Huang, J., et al.. (2020). Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis. 11: 720, https://doi.org/10.1038/s41419-020-02922-y.Search in Google Scholar PubMed PubMed Central

Sbai, O., Djelloul, M., Auletta, A., Ieraci, A., Vascotto, C., and Perrone, L. (2022). Correction to: RAGE-TXNIP axis drives inflammation in Alzheimer’s by targeting Aβ to mitochondria in microglia. Cell Death Dis. 13: 368, https://doi.org/10.1038/s41419-022-04840-7.Search in Google Scholar PubMed PubMed Central

Schapira, A.H. and Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 26: 1049–1055, https://doi.org/10.1002/mds.23732.Search in Google Scholar PubMed

Shin, H.W., Shinotsuka, C., Torii, S., Murakami, K., and Nakayama, K. (1997). Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. 122: 525–530, https://doi.org/10.1093/oxfordjournals.jbchem.a021784.Search in Google Scholar PubMed

Shirendeb, U., Reddy, A.P., Manczak, M., Calkins, M.J., Mao, P., Tagle, D.A., and Reddy, P.H. (2011). Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum. Mol. Genet. 20: 1438–1455, https://doi.org/10.1093/hmg/ddr024.Search in Google Scholar PubMed PubMed Central

Shirendeb, U.P., Calkins, M.J., Manczak, M., Anekonda, V., Dufour, B., McBride, J.L., Mao, P., and Reddy, P.H. (2012). Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum. Mol. Genet. 21: 406–420, https://doi.org/10.1093/hmg/ddr475.Search in Google Scholar PubMed PubMed Central

Slupe, A.M., Merrill, R.A., Flippo, K.H., Lobas, M.A., Houtman, J.C., and Strack, S. (2013). A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J. Biol. Chem. 288: 12353–12365, https://doi.org/10.1074/jbc.m113.459677.Search in Google Scholar

Sugiura, A., Nagashima, S., Tokuyama, T., Amo, T., Matsuki, Y., Ishido, S., Kudo, Y., McBride, H.M., Fukuda, T., Matsushita, N., et al.. (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell 51: 20–34, https://doi.org/10.1016/j.molcel.2013.04.023.Search in Google Scholar PubMed

Suzuki, M., Jeong, S.Y., Karbowski, M., Youle, R.J., and Tjandra, N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334: 445–458, https://doi.org/10.1016/j.jmb.2003.09.064.Search in Google Scholar PubMed

Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282: 11521–11529, https://doi.org/10.1074/jbc.m607279200.Search in Google Scholar PubMed

Tang, J., Hu, Z., Tan, J., Yang, S., and Zeng, L. (2016). Parkin protects against oxygen-glucose deprivation/reperfusion insult by promoting Drp1 degradation. Oxid. Med. Cell. Longev. 2016: 8474303, https://doi.org/10.1155/2016/8474303.Search in Google Scholar PubMed PubMed Central

Tang, J., Zhuo, Y., and Li, Y. (2021). Effects of iron and zinc on mitochondria: potential mechanisms of glaucomatous injury. Front. Cell Dev. Biol. 9: 720288, https://doi.org/10.3389/fcell.2021.720288.Search in Google Scholar PubMed PubMed Central

Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62: 341–360, https://doi.org/10.1042/ebc20170104.Search in Google Scholar PubMed PubMed Central

Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L.Jr., Losón, O.C., Hellberg, K., Young, N.P., Chen, H., Polleux, F., Chan, D.C., et al.. (2016). Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351: 275–281, https://doi.org/10.1126/science.aab4138.Search in Google Scholar PubMed PubMed Central

Travaglione, S., Loizzo, S., Rizza, T., Del Brocco, A., Ballan, G., Guidotti, M., Vona, R., Di Nottia, M., Torraco, A., Carrozzo, R., et al.. (2014). Enhancement of mitochondrial ATP production by the Escherichia coli cytotoxic necrotizing factor 1. FEBS J. 281: 3473–3488, https://doi.org/10.1111/febs.12874.Search in Google Scholar PubMed

Ugarte-Uribe, B., Prévost, C., Das, K.K., Bassereau, P., and García-Sáez, A.J. (2018). Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria. J. Cell Sci. 132: jcs208603, https://doi.org/10.1242/jcs.208603.Search in Google Scholar PubMed

Vannuvel, K., Van Steenbrugge, M., Demazy, C., Ninane, N., Fattaccioli, A., Fransolet, M., Renard, P., Raes, M., and Arnould, T. (2016). Effects of a sublethal and transient stress of the endoplasmic reticulum on the mitochondrial population. J. Cell. Physiol. 231: 1913–1931, https://doi.org/10.1002/jcp.25292.Search in Google Scholar PubMed

Wang, H., Song, P., Du, L., Tian, W., Yue, W., Liu, M., Li, D., Wang, B., Zhu, Y., Cao, C., et al.. (2011). Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem. 286: 11649–11658, https://doi.org/10.1074/jbc.m110.144238.Search in Google Scholar

Wang, L., Wang, Z., You, W., Yu, Z., Li, X., Shen, H., Li, H., Sun, Q., Li, W., and Chen, G. (2022). Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res. Bull. 183: 184–200, https://doi.org/10.1016/j.brainresbull.2022.03.010.Search in Google Scholar PubMed

Wang, N., Xie, X., Yang, D., Xian, J., Li, Y., Ren, R., Peng, X., Jonas, J.B., and Weinreb, R.N. (2012). Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology 119: 2065–2073 e2061, https://doi.org/10.1016/j.ophtha.2012.03.054.Search in Google Scholar PubMed

Wang, W., Wang, L., Lu, J., Siedlak, S.L., Fujioka, H., Liang, J., Jiang, S., Ma, X., Jiang, Z., da Rocha, E.L., et al.. (2016). The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22: 869–878, https://doi.org/10.1038/nm.4130.Search in Google Scholar PubMed PubMed Central

Wei, C.C., Yang, N.C., and Huang, C.W. (2021). Zearalenone induces dopaminergic neurodegeneration via DRP-1-involved mitochondrial fragmentation and apoptosis in a Caenorhabditis elegans Parkinson’s disease model. J. Agric. Food Chem. 69: 12030–12038, https://doi.org/10.1021/acs.jafc.1c05836.Search in Google Scholar PubMed

Wong, C.E., Jin, L.W., Chu, Y.P., Wei, W.Y., Ho, P.C., and Tsai, K.J. (2021). TDP-43 proteinopathy impairs mRNP granule mediated postsynaptic translation and mRNA metabolism. Theranostics 11: 330–345, https://doi.org/10.7150/thno.51004.Search in Google Scholar PubMed PubMed Central

Wong, Y.C., Ysselstein, D., and Krainc, D. (2018). Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554: 382–386, https://doi.org/10.1038/nature25486.Search in Google Scholar PubMed PubMed Central

Wu, J.H., Zhang, S.H., Gao, F.J., Lei, Y., Chen, X.Y., Gao, F., Zhang, S.J., and Sun, X.H. (2013). RNAi screening identifies GSK3beta as a regulator of DRP1 and the neuroprotection of lithium chloride against elevated pressure involved in downregulation of DRP1. Neurosci. Lett. 554: 99–104, https://doi.org/10.1016/j.neulet.2013.08.057.Search in Google Scholar PubMed

Xiong, N., Long, X., Xiong, J., Jia, M., Chen, C., Huang, J., Ghoorah, D., Kong, X., Lin, Z., and Wang, T. (2012). Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit. Rev. Toxicol. 42: 613–632, https://doi.org/10.3109/10408444.2012.680431.Search in Google Scholar PubMed

Xu, D., Yang, P., Yang, Z.J., Li, Q.G., Ouyang, Y.T., Yu, T., Shangguan, J.H., Wan, Y.Y., Jiang, L.P., Qu, X.H., et al.. (2021). Blockage of Drp1 phosphorylation at Ser579 protects neurons against Aβ(1-42)-induced degeneration. Mol. Med. Rep. 24: 657, https://doi.org/10.3892/mmr.2021.12296.Search in Google Scholar PubMed PubMed Central

Xu, S., Cherok, E., Das, S., Li, S., Roelofs, B.A., Ge, S.X., Polster, B.M., Boyman, L., Lederer, W.J., Wang, C., et al.. (2016). Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27: 349–359, https://doi.org/10.1091/mbc.e15-09-0678.Search in Google Scholar

Yan, J., Liu, X.H., Han, M.Z., Wang, Y.M., Sun, X.L., Yu, N., Li, T., Su, B., and Chen, Z.Y. (2015). Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol. Aging 36: 211–227, https://doi.org/10.1016/j.neurobiolaging.2014.08.005.Search in Google Scholar PubMed

Yapa, N.M.B., Lisnyak, V., Reljic, B., and Ryan, M.T. (2021). Mitochondrial dynamics in health and disease. FEBS Lett. 595: 1184–1204, https://doi.org/10.1002/1873-3468.14077.Search in Google Scholar PubMed

Yin, X., Manczak, M., and Reddy, P.H. (2016). Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum. Mol. Genet. 25: 1739–1753, https://doi.org/10.1093/hmg/ddw045.Search in Google Scholar PubMed PubMed Central

Yoon, Y., Krueger, E.W., Oswald, B.J., and McNiven, M.A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell Biol. 23: 5409–5420, https://doi.org/10.1128/mcb.23.15.5409-5420.2003.Search in Google Scholar

Younas, N., Fernandez Flores, L.C., Hopfner, F., Höglinger, G.U., and Zerr, I. (2022). A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl. Neurodegener. 11: 28, https://doi.org/10.1186/s40035-022-00301-5.Search in Google Scholar PubMed PubMed Central

Yu, R., Jin, S.B., Lendahl, U., Nister, M., and Zhao, J. (2019a). Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J. 38: e99748, https://doi.org/10.15252/embj.201899748.Search in Google Scholar PubMed PubMed Central

Yu, X., Jia, L., Yu, W., and Du, H. (2019b). Dephosphorylation by calcineurin regulates translocation of dynamin-related protein 1 to mitochondria in hepatic ischemia reperfusion induced hippocampus injury in young mice. Brain Res. 1711: 68–76, https://doi.org/10.1016/j.brainres.2019.01.018.Search in Google Scholar PubMed

Zhan, L., Lu, Z., Zhu, X., Xu, W., Li, L., Li, X., Chen, S., Sun, W., and Xu, E. (2019). Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. Faseb. J. 33: 1313–1329, https://doi.org/10.1096/fj.201800111rr.Search in Google Scholar

Zhang, C., Huang, J., and An, W. (2017). Hepatic stimulator substance resists hepatic ischemia/reperfusion injury by regulating Drp1 translocation and activation. Hepatology 66: 1989–2001, https://doi.org/10.1002/hep.29326.Search in Google Scholar PubMed

Zhang, Q., Hu, C., Huang, J., Liu, W., Lai, W., Leng, F., Tang, Q., Liu, Y., Wang, Q., Zhou, M., et al.. (2019). ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp. Mol. Med. 51: 1–13, https://doi.org/10.1038/s12276-019-0318-z.Search in Google Scholar PubMed PubMed Central

Zhang, C., Wang, J., Zhu, J., Chen, Y., and Han, X. (2020a). Microcystin-leucine-arginine induced neurotoxicity by initiating mitochondrial fission in hippocampal neurons. Sci. Total Environ. 703: 134702, https://doi.org/10.1016/j.scitotenv.2019.134702.Search in Google Scholar PubMed

Zhang, R., Xue, M.Y., Liu, B.S., Wang, W.J., Fan, X.H., Zheng, B.Y., Yuan, Q.H., Xu, F., Wang, J.L., and Chen, Y.G. (2020b). Aldehyde dehydrogenase 2 preserves mitochondrial morphology and attenuates hypoxia/reoxygenation-induced cardiomyocyte injury. World J. Emerg. Med. 11: 246–254, https://doi.org/10.5847/wjem.j.1920-8642.2020.04.007.Search in Google Scholar PubMed PubMed Central

Zhang, S., Zhao, J., Quan, Z., Li, H., and Qing, H. (2022). Mitochondria and other organelles in neural development and their potential as therapeutic targets in neurodegenerative diseases. Front. Neurosci. 16: 853911, https://doi.org/10.3389/fnins.2022.853911.Search in Google Scholar PubMed PubMed Central

Zhang, W., Gu, G.J., Shen, X., Zhang, Q., Wang, G.M., and Wang, P.J. (2015). Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol. Aging 36: 1282–1292, https://doi.org/10.1016/j.neurobiolaging.2014.10.040.Search in Google Scholar PubMed

Zhang, Z., Liu, L., Jiang, X., Zhai, S., and Xing, D. (2016). The essential role of Drp1 and its regulation by S-nitrosylation of Parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxidants Redox Signal. 25: 609–622, https://doi.org/10.1089/ars.2016.6634.Search in Google Scholar PubMed

Zhao, Y., Sun, X., and Qi, X. (2018). Inhibition of Drp1 hyperactivation reduces neuropathology and behavioral deficits in zQ175 knock-in mouse model of Huntington’s disease. Biochem. Biophys. Res. Commun. 507: 319–323, https://doi.org/10.1016/j.bbrc.2018.11.031.Search in Google Scholar PubMed PubMed Central

Received: 2022-05-12
Accepted: 2022-07-08
Published Online: 2022-09-06
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0056/html
Scroll to top button