Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter May 1, 2024

Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base

  • Saleh Bufarwa ORCID logo EMAIL logo , Reem El-Seifat , Hana Binhamad and Rehab Hesien

Abstract

Scientists are searching for reactive oxygen species, which have been associated with various health issues like heart problems, neurological disorders, inflammation, and aging. Salen complexes have proven to be effective in multiple oxidative stress situations and have been used as catalase and superoxide mimetics. To explore this further, three mixed complexes were synthesized using a Schiff base (salen) and a sugar (d-glucose) with Co(II), Ni(II), and Cu(II) ions. These complexes were then diagnosed by different analytical and spectral techniques. Stoichiometry, stereochemistry, some physical properties, and the method of bonding complexes were measured. Comparisons of the IR and 1HNMR spectra of the ligands with the complexes demonstrated the involvement of the azomethine group of the ligand in the chelation process. The mass spectra and TGA agree with the proposed formula of the complexes, and the conductivity and UV–Vis data supported the octahedral geometry of the complexes, and information was obtained from partial parameter calculations by molecular modeling. The metal complexes exhibited strong antimicrobial and antioxidant properties when compared to standard drugs. The like-superoxide and catalyst mimetic complexes were screened using DPPH ABTS, revealing their effectiveness.


Corresponding author: Saleh Bufarwa, Department of Chemistry, Omar Al-Mukhtar University, El-Beida City, Libya, E-mail:

Acknowledgments

Mr. Saleh Bufarwa expresses his gratitude to Mr. Omran Muftah, Faculty of Pharmacy at Omar Al-Mukhtar University, for his assistance in conducting some analyses. The author also extend their sincere thanks to Mr. Abdul-Jalil Hamad for providing some of the requirements for this research., as well as the Department of Chemistry, Omar Al-Mukhtar University, for providing research facilities.

  1. Research ethics: Not applicable.

  2. Author contributions: H.B. and S.B—Conceptualization, Validation, Writing an original draft, Investigation, Methodology, Data curation. R.E. and R.H—Data curation, Supervision, Writing—review and editing, Validation. R.E.—Sofware, Visualization, Writing—original draft, Methodology, and Validation. S.B—Sofware, Visualization, Writing—original draft, Validation. H.B.—Writing-review and editing, Validation “The authors have accepted responsibility for the entire content of this manuscript and approved its submission.”

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Schiff, H. The Syntheses and Characterization of Schiff Base. Ann. Chem. Suppl. 1864, 3, 343–349.Search in Google Scholar

2. Pessoa, J. C.; Correia, I. Salan vs. Salen Metal Complexes in Catalysis and Medicinal Applications: Virtues and Pitfalls. Coord. Chem. Rev. 2019, 388, 227–247; https://doi.org/10.1016/j.ccr.2019.02.035.Search in Google Scholar

3. Abdel-Latif, S.; Hassib, H.; Issa, Y. Studies on Some Salicylaldehyde Schiff Base Derivatives and Their Complexes with Cr (III), Mn (II), Fe (III), Ni (II) and Cu (II). Spectrochim. Acta Mol. Biomol. Spectrosc. 2007, 67, 950–957; https://doi.org/10.1016/j.saa.2006.09.013.Search in Google Scholar PubMed

4. Chandra, S.; Gupta, L. K. EPR and Electronic Spectral Studies on Co (II), Ni (II) and Cu (II) Complexes with a New Tetradentate [N4] Macrocyclic Ligand and Their Biological Activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 2004, 60, 1563–1571; https://doi.org/10.1016/j.saa.2003.08.023.Search in Google Scholar PubMed

5. Chai, L. Q.; Xu, L. Y.; Zhang, X. F.; Li, Y. X. Two Dinuclear Copper (II) and Nickel (II) Complexes Based on 4-(diethylamino) Salicylaldehyde: X-ray Structures, Spectroscopic, Electrochemical, Antibacterial, Hirshfeld Surfaces Analyses, and Time‐dependent Density Functional Theory Calculations. Appl. Organomet. Chem. 2021, 35, e6068; https://doi.org/10.1002/aoc.6068.Search in Google Scholar

6. Abdel-Rahman, L. H.; El-Khatib, R. M.; Nassr, L. A.; Abu-Dief, A. M.; Ismael, M.; Seleem, A. A. Metal Based Pharmacologically Active Agents: Synthesis, Structural Characterization, Molecular Modeling, CT-DNA Binding Studies and In Vitro Antimicrobial Screening of Iron (II) Bromosalicylidene Amino Acid Chelates. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 117, 366–378; https://doi.org/10.1016/j.saa.2013.07.056.Search in Google Scholar PubMed

7. Li, X.; Shen, Q.; Zhang, G.; Zhang, D.; Zheng, A.; Guan, F.; Sun, Y. Layered Zinc and Lanthanum Hydroxide Nitrates Hosting Chiral Sulphonato-(Salen) Manganese (III) Complex Catalyzed Asymmetric Epoxidation Reactions. Catal. Commun. 2013, 41, 126–131; https://doi.org/10.1016/j.catcom.2013.07.028.Search in Google Scholar

8. Mekler, V.; Bystryak, S. Application of O-Phenylenediamine as a Fluorogenic Substrate in Peroxidase-Mediated Enzyme-Linked Immunosorbent Assay. Anal. Chim. Acta 1992, 264, 359–363; https://doi.org/10.1016/0003-2670(92)87025-g.Search in Google Scholar

9. Zhang, X.; Zhou, H.; Su, X.; Chen, X.; Yang, C.; Qin, J.; Inokuchi, M. Synthesis, Characterization and Magnetic Properties of Transition Metal Salen Complexes Intercalated into Layered MnPS3. J. Alloys Compd. 2007, 432, 247–252; https://doi.org/10.1016/j.jallcom.2006.05.107.Search in Google Scholar

10. Amer, S.; El-Wakiel, N.; El-Ghamry, H. Synthesis, Spectral, Antitumor and Antimicrobial Studies on Cu (II) Complexes of Purine and Triazole Schiff Base Derivatives. J. Mol. Struct. 2013, 1049, 326–335; https://doi.org/10.1016/j.molstruc.2013.06.059.Search in Google Scholar

11. Kennedy, J. F.; White, C. A. Bioactive Carbohydrates: In Chemistry, Biochemistry and Biology, 1st ed.; Ellis Horwood Ltd.: UK, 1983; pp. 112–135.Search in Google Scholar

12. Lippard, S. J.; Berg, J. M. Overview of Bioinorganic Chemistry. In Principles of Bioinorganic Chemistry; University Science Books: USA, 1994; pp. 3–18.Search in Google Scholar

13. Bonev, B.; Hooper, J.; Parisot, J. Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method. J. Antimicrob. Chemother. 2008, 61, 1295–1301; https://doi.org/10.1093/jac/dkn090.Search in Google Scholar PubMed

14. Srinivasan, K.; Michaud, P.; Kochi, J. K. Epoxidation of Olefins with Cationic (Salen) Manganese (III) Complexes. The Modulation of Catalytic Activity by Substituents. J. Am. Chem. Soc. 1986, 108, 2309–2320; https://doi.org/10.1021/ja00269a029.Search in Google Scholar PubMed

15. Jacobsen, E. N. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins. In Catalytic Asymmetric Synthesis, 1993; pp 159–202.10.1002/chin.199431302Search in Google Scholar

16. McDonald, M. C.; di Villa Bianca, R. d.E.; Wayman, N. S.; Pinto, A.; Sharpe, M. A.; Cuzzocrea, S.; Chatterjee, P. K.; Thiemermann, C. A Superoxide Dismutase Mimetic with Catalase Activity (EUK-8) Reduces the Organ Injury in Endotoxic Shock. Eur. J. Pharmacol. 2003, 466, 181–189; https://doi.org/10.1016/s0014-2999(03)01538-3.Search in Google Scholar PubMed

17. Sies, H.; Jones, D. P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383; https://doi.org/10.1038/s41580-020-0230-3.Search in Google Scholar PubMed

18. Noritake, Y.; Umezawa, N.; Kato, N.; Higuchi, T. Manganese Salen Complexes with Acid–Base Catalytic Auxiliary: Functional Mimetics of Catalase. Inorg. Chem. 2013, 52, 3653–3662; https://doi.org/10.1021/ic302101c.Search in Google Scholar PubMed

19. Ali, O. A. Synthesis, Spectroscopic, Fluorescence Properties and Biological Evaluation of Novel Pd (II) and Cd (II) Complexes of NOON Tetradentate Schiff Bases. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 121, 188–195; https://doi.org/10.1016/j.saa.2013.10.015.Search in Google Scholar PubMed

20. Maljaars, C. E. P.; Halkes, K. M.; de Oude, W. L.; Haseley, S. R.; Upton, P. J.; McDonnell, M. B.; Kamerling, J. P. Affinity Determination of Ricinus communis Agglutinin Ligands Identified from Combinatorial O-And S–N–Glycopeptide Libraries. J. Combin. Chem. 2006, 8, 812–819; https://doi.org/10.1021/cc060019j.Search in Google Scholar PubMed

21. Binhamad, H. A.; El-seifat, R. M.; Hesien, R. A.; Bufarw, S. M. Synthesis, Characterization (I.R, Elemental Analysis, Molar Conductivity), and Antibacterial Investigation of Complex Produced by the Reaction between Co (II) Ion with Mixed Ligands of (Amoxicillin and Salen). Al-Mukhtar J. Basic Sci. 2023, 21, 98–104.Search in Google Scholar

22. Omar, M.; Abd El-Halim, H. F.; Khalil, E. A. Synthesis, Characterization, and Biological and Anticancer Studies of Mixed Ligand Complexes with Schiff Base and 2,2′-Bipyridine. Appl. Organomet. Chem. 2017, 31, e3724; https://doi.org/10.1002/aoc.3724.Search in Google Scholar

23. Bufarwa, S.; Abdel-Latif, S. Spectroscopic, Thermal, and Conductometric Studies of Some (Arylazo) Quinolin-8-Ol and Their Complexes with the Divalent Ions of Mn, Ni, Cu, and Zn. Eur. Chem. Bull. 2023, 12, 187–197.10.21203/rs.3.rs-2210817/v1Search in Google Scholar

24. Kumar, B.; Devi, J.; Manuja, A. Synthesis, Structure Elucidation, Antioxidant, Antimicrobial, Anti-inflammatory and Molecular Docking Studies of Transition Metal (II) Complexes Derived from Heterocyclic Schiff Base Ligands. Res. Chem. Intermed. 2023, 49, 2455–2493; https://doi.org/10.1007/s11164-023-04991-y.Search in Google Scholar

25. Gaber, M.; El-Ghamry, H. A.; Fathalla, S. K.; Mansour, M. A. Synthesis, Spectroscopic, Thermal and Molecular Modeling Studies of Zn2+, Cd2+ and UO22+ Complexes of Schiff Bases Containing Triazole Moiety. Antimicrobial, Anticancer, Antioxidant and DNA Binding Studies. Mater. Sci. Eng. C 2018, 83, 78–89; https://doi.org/10.1016/j.msec.2017.11.004.Search in Google Scholar PubMed

26. Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287; https://doi.org/10.1016/0003-2697(71)90370-8.Search in Google Scholar PubMed

27. Puglisi, A.; Tabbı̀, G.; Vecchio, G. Bioconjugates of Cyclodextrins of Manganese Salen-Type Ligand with Superoxide Dismutase Activity. J. Inorg. Biochem. 2004, 98, 969–976; https://doi.org/10.1016/s0162-0134(04)00048-0.Search in Google Scholar

28. Al-Resayes, S. I.; Jarad, A. J.; Al-Zinkee, J. M.; Al-Noor, T. H.; El-ajaily, M. M.; Abdalla, M.; Min, K.; Azam, M.; Mohapatra, R. K. Synthesis, Characterization, Antimicrobial Studies, and Molecular Docking Studies of Transition Metal Complexes Formed from a Benzothiazole-Based Azo Ligand. Bull. Chem. Soc. Ethiop. 2023, 37, 931–944; https://doi.org/10.4314/bcse.v37i4.10.Search in Google Scholar

29. Inba, P. J. K.; Annaraj, B.; Thalamuthu, S.; Neelakantan, M. Salen, Reduced Salen and N-Alkylated Salen Type Compounds: Spectral Characterization, Theoretical Investigation and Biological Studies. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 104, 300–309; https://doi.org/10.1016/j.saa.2012.11.100.Search in Google Scholar PubMed

30. Victorio, J. D.; Buquiran, D. P.; del Rosario, E. J. Decolorization of Glucose-Glycine Melanoidin as Model Color Pollutant Using Ozonation and Bacterial Treatment. Philipp. J. Sci. 2007, 136, 65.Search in Google Scholar

31. Al-Farhan, B. S.; Basha, M. T.; Abdel Rahman, L. H.; El-Saghier, A. M.; Abou El-Ezz, D.; Marzouk, A. A.; Shehata, M. R.; Abdalla, E. M. Synthesis, Dft Calculations, Antiproliferative, Bactericidal Activity and Molecular Docking of Novel Mixed-Ligand Salen/8-Hydroxyquinoline Metal Complexes. Molecules 2021, 26, 4725; https://doi.org/10.3390/molecules26164725.Search in Google Scholar PubMed PubMed Central

32. Kumar, B.; Devi, J.; Dubey, A.; Tufail, A.; Sharma, S. Exploring the Antimalarial, Antioxidant, Anti-inflammatory Activities of Newly Synthesized Transition Metal (II) Complexes Bearing Thiosemicarbazone Ligands: Insights from Molecular Docking, DFT, MESP and ADMET Studies. Inorg. Chem. Commun. 2024, 159, 111674; https://doi.org/10.1016/j.inoche.2023.111674.Search in Google Scholar

33. Ebrahimi, H. P.; Hadi, J. S.; Abdulnabi, Z. A.; Bolandnazar, Z. Spectroscopic, Thermal Analysis and DFT Computational Studies of Salen-type Schiff Base Complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 117, 485–492; https://doi.org/10.1016/j.saa.2013.08.044.Search in Google Scholar PubMed

34. Kaufmann, M.; Mügge, C.; Kroh, L. W. NMR Analyses of Complex D-Glucose Anomerization. Food Chem. 2018, 265, 222–226; https://doi.org/10.1016/j.foodchem.2018.05.100.Search in Google Scholar PubMed

35. Alexandersson, E.; Nestor, G. Complete 1H and 13C NMR Spectral Assignment of d-Glucofuranose. Carbohydr. Res. 2022, 511, 108477; https://doi.org/10.1016/j.carres.2021.108477.Search in Google Scholar PubMed

36. Lanza, V.; Vecchio, G. New Glycosylen–Manganese (III) Complexes and RCA120 Hybrid Systems as Superoxide Dismutase/Catalase Mimetics. Biomimetics 2023, 8, 447; https://doi.org/10.3390/biomimetics8050447.Search in Google Scholar PubMed PubMed Central

37. Almáši, M.; Vilkova, M.; Bednarčík, J. Synthesis, Characterization and Spectral Properties of Novel Azo-Azomethine-Tetracarboxylic Schiff Base Ligand and its Co (II), Ni (II), Cu (II) and Pd (II) Complexes. Inorg. Chim. Acta. 2021, 515, 120064; https://doi.org/10.1016/j.ica.2020.120064.Search in Google Scholar

38. Mahmoud, W. H.; Deghadi, R. G.; Mohamed, G. G. Preparation, Geometric Structure, Molecular Docking Thermal and Spectroscopic Characterization of Novel Schiff Base Ligand and its Metal Chelates: Screening Their Anticancer and Antimicrobial Activities. J. Therm. Anal. Calorimetry 2017, 127, 2149–2171; https://doi.org/10.1007/s10973-016-5826-7.Search in Google Scholar

39. Liu, X.; Feng, H.; Li, Y.; Ma, X.; Chen, F.; Yan, Q. Ferrocene-based Hydrazone Energetic Transition-Metal Complexes as Multifunctional Combustion Catalysts for the Thermal Decomposition of Ammonium Perchlorate. J. Ind. Eng. Chem. 2022, 115, 193–208; https://doi.org/10.1016/j.jiec.2022.08.001.Search in Google Scholar

40. Devi, J.; Kumar, S.; Kumar, B.; Asija, S.; Kumar, A. Synthesis, Structural Analysis, In Vitro Antioxidant, Antimicrobial Activity and Molecular Docking Studies of Transition Metal Complexes Derived from Schiff Base Ligands of 4-(Benzyloxy)-2-Hydroxybenzaldehyde. Res. Chem. Intermed. 2022, 48, 1541–1576; https://doi.org/10.1007/s11164-021-04644-y.Search in Google Scholar

41. Kumar, S.; Devi, J.; Dubey, A.; Kumar, D.; Jindal, D. K.; Asija, S.; Sharma, A. Co (II), Ni (II), Cu (II) and Zn (II) Complexes of Schiff Base Ligands: Synthesis, Characterization, DFT, In Vitro Antimicrobial Activity and Molecular Docking Studies. Res. Chem. Intermed. 2023, 49, 939–965; https://doi.org/10.1007/s11164-022-04941-0.Search in Google Scholar

42. El-Sonbati, A.; Diab, M.; El-Bindary, A.; Morgan, S. M. Supramolecular Spectroscopic and Thermal Studies of Azodye Complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 127, 310–328; https://doi.org/10.1016/j.saa.2014.02.037.Search in Google Scholar PubMed

43. Mahmoud, W. H.; Sayed, F. N.; Mohamed, G. G. Azo Dye with Nitrogen Donor Sets of Atoms and its Metal Complexes: Synthesis, Characterization, DFT, Biological, Anticancer and Molecular Docking Studies. Appl. Organomet. Chem. 2018, 32, e4347; https://doi.org/10.1002/aoc.4347.Search in Google Scholar

44. Vasantha, P.; Shekhar, B.; PV, A. L. Copper-metformin Ternary Complexes: Thermal, Photochemosensitivity and Molecular Docking Studies. Mater. Sci. Eng. C 2018, 90, 621–633; https://doi.org/10.1016/j.msec.2018.04.052.Search in Google Scholar PubMed

45. El-Ghamaz, N.; Diab, M.; El-Bindary, A.; El-Sonbati, A.; Seyam, H. Geometrical Structure and Optical Properties of Antipyrine Schiff Base Derivatives. Mater. Sci. Semicond. Process. 2014, 27, 521–531; https://doi.org/10.1016/j.mssp.2014.07.022.Search in Google Scholar

46. Nworie, F. S. Bis (Salicylidene) Ethylenediamine (Salen) and Bis (Salicylidene) Ethylenediamine-Metal Complexes: From Structure to Biological Activity. J. Anal. Pharm. Res. 2016, 3, 00076; https://doi.org/10.15406/japlr.2016.03.00076.Search in Google Scholar

47. Ali, S. H.; Al-Redha, H. M.; Sachit, B. A. Antibacterial Activity of Some Salen Metal Complexes. In 2nd International Scientific Conference of Al-Ayen University (ISCAU-2020), Al-Ayen University, Iraq; IOP Publishing: Bristol, England, Vol. 928, 2020; p. 052016.10.1088/1757-899X/928/5/052016Search in Google Scholar

48. Bielski, B. H.; Shiue, G. G.; Bajuk, S. Reduction of Nitro Blue Tetrazolium by CO2-and O2-Radicals. J. Phys. Chem. 1980, 84, 830–833; https://doi.org/10.1021/j100445a006.Search in Google Scholar

49. Lanza, V.; Vecchio, G. New Conjugates of Superoxide Dismutase/Catalase Mimetics with Cyclodestrins. J. Inorg. Biochem. 2009, 103, 381–388; https://doi.org/10.1016/j.jinorgbio.2008.11.017.Search in Google Scholar PubMed

50. El-Zahed, M.; Diab, M.; El-Sonbati, A.; Nozha, S.; Issa, H.; El-Mogazy, M.; Morgan, S. M. Antibacterial, Antifungal, DNA Interactions, and Antioxidant Evaluation of Cu (II) Co (II), Ni (II), Mn (II) and UO2 (II) Mixed Ligand Metal Complexes: Synthesis, Characterization and Molecular Docking Studies. Mater. Sci. Eng., B 2024, 299, 116998; https://doi.org/10.1016/j.mseb.2023.116998.Search in Google Scholar

51. Liu, J.; Zhu, Y.; Fan, Y.; Gong, L.; Zhu, X.; Zhang, Y.; Liu, M.; Yao, S. The pH-dependent Multiple Nanozyme Activities of Copper-Cerium Dioxide and its Application in Regulating Intracellular Oxygen and Hydrogen Peroxide Levels. J. Colloid Interface Sci. 2024, 654, 1054–1062; https://doi.org/10.1016/j.jcis.2023.10.050.Search in Google Scholar

52. Mandakhbayar, N.; Ji, Y.; El-Fiqi, A.; Patel, K. D.; Yoon, D. S.; Dashnyam, K.; Bayaraa, O.; Jin, G.; Tsogtbaatar, K.; Kim, T.-H.; Lee, J. H. Double Hits with Bioactive Nanozyme Based on Cobalt-Doped Nanoglass for Acute and Diabetic Wound Therapies through Anti-inflammatory and Pro-angiogenic Functions. Bioact. Mater. 2024, 31, 298–311; https://doi.org/10.1016/j.bioactmat.2023.08.014.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revic-2023-0028).


Received: 2023-10-15
Accepted: 2024-04-08
Published Online: 2024-05-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2023-0028/html
Scroll to top button