Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter July 28, 2023

Ruthenium complexes for breast cancer therapy

  • Shaheen Sadique , Abeer Ameen Baqer , Abbas Washeel Salman , Muhammad Adnan Iqbal ORCID logo EMAIL logo , Mustafa M. Kadim EMAIL logo , Faisal Jamil , Adnan Majeed , Shaista Manahil and Areeba Altaf

Abstract

Breast cancer cells have long been inhibited by polypyridine Ru(II) complexes, which are excellent antitumor agents. Due to their multi-targeting properties, this class of ruthenium complexes has received increasing attention as anticancer drug candidates approach to various cellular targets. The aim of this review is to give information about the ligands that were carefully chosen for ruthenium complexes. There has been a great deal of interest in using ruthenium-based complexes to treat breast cancer. Several species have shown potential as treatment candidates. However, further research is needed to determine how these agents affect the metastatic potential of breast cancer cells. The mechanism of action of Ru-based anticancer candidates NAMI-A and KP1019 during phase I clinical trials has been discussed. This article explains hormone-positive breast cancer and triple-negative breast-cancer treatment by using Ru complexes. Although platinum (Pt-based) anticancer medication is widely used in cancer treatment, a minor improvement has been seen and that is Platinum replaced with Ruthenium for its anticancer properties. We have also highlighted the best effective ruthenium-based complexes in treating T.N.B.C. (triple-negative breast cancer) here in this collection.


Corresponding authors: Muhammad Adnan Iqbal, Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan; and Organometallic and Coordination Chemistry, Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan, E-mail: ; and Mustafa M. Kadim, Medical Laboratory Techniques Department, Dijlah University College, Baghdad, Iraq; Medical Instruments Engineering Techniques, National University of Science and Technology, Thi Qar, Iraq; and Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq, E-mail:

Award Identifier / Grant number: 2-9/PAS/241

Award Identifier / Grant number: NRPU # 8198

Acknowledgment

The authors are thankful to the higher education commission of Pakistan for awarding research grant NRPU # 8198 and Pakistan Academy of Science (PAS) award letter number 5–9/PAS/241.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbasi, M.; Yaqoob, M.; Haque, R. A.; Iqbal, M. A. Potential of gold candidates against human colon cancer. Mini Rev. Med. Chem. 2021, 21(1), 69–78; https://doi.org/10.2174/1389557520666200807130721.Search in Google Scholar PubMed

Al Nasr, I. S.; Koko, W. S.; Khan, T. A.; Gürbüz, N.; Özdemir, I.; Hamdi, N. Evaluation of ruthenium (II) N-heterocyclic carbene complexes as enzymatic inhibitory agents with antioxidant, antimicrobial, antiparasitical and antiproliferative activity. Molecules 2023, 28(3), 1359; https://doi.org/10.3390/molecules28031359.Search in Google Scholar PubMed PubMed Central

Alessio, E. Thirty years of the drug candidate NAMI‐A and the myths in the field of ruthenium anticancer compounds: a personal perspective. Eur. J. Inorg. Chem. 2017, 2017(12), 1549–1560; https://doi.org/10.1002/ejic.201600986.Search in Google Scholar

Alessio, E.; Messori, L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules 2019, 24(10), 1995; https://doi.org/10.3390/molecules24101995.Search in Google Scholar PubMed PubMed Central

Ashraf, R.; Sarfraz, A.; Taskin-Tok, T.; Iqbal, M. J.; Iqbal, M. A.; Iqbal, J.; Bhatti, H. N.; El-Naggar, M.; Akram, S.; Murshed, M. N.; El Sayed, M. E.; Samir, A. Synthesis, molecular docking and anticancer potential of azolium based salts and their silver complexes: DNA/BSA interaction studies and cell cycle analysis. J. Mol. Liq. 2023, 369, 120921; https://doi.org/10.1016/j.molliq.2022.120921.Search in Google Scholar

Ayipo, Y. O.; Osunniran, W. A.; Mordi, M. N. Metal complexes of β-carboline: advances in anticancer therapeutics. Coord. Chem. Rev. 2021, 432, 213746; https://doi.org/10.1016/j.ccr.2020.213746.Search in Google Scholar

Bashir, K.; Jamil, F.; Iqbal, M. A.; Nazir, S.; Shoukat, U. S.; Bashir, A.; Nasrullah, K.; Rehman, A. U. Detection of different chemical moieties in aqueous media by luminescent Europium as sensor. Rev. Inorg. Chem. 2023; https://doi.org/10.1515/revic-2022-0034.Search in Google Scholar

Bergamo, A.; Sava, G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 2011, 40(31), 7817–7823; https://doi.org/10.1039/c0dt01816c.Search in Google Scholar PubMed

Bergamo, A.; Masi, A.; Jakupec, M. A.; Keppler, B. K.; Sava, G. Inhibitory effects of the ruthenium complex KP1019 in models of mammary cancer cell migration and invasion. Met. Base. Drugs 2009, 2009, 681270; https://doi.org/10.1155/2009/681270.Search in Google Scholar PubMed PubMed Central

Bhardwaj, P.; Au, C. C.; Benito-Martin, A.; Ladumor, H.; Oshchepkova, S.; Moges, R.; Brown, K. A. Estrogens and breast cancer: mechanisms involved in obesity-related development, growth and progression. J. Steroid Biochem. Mol. Biol. 2019, 189, 161–170; https://doi.org/10.1016/j.jsbmb.2019.03.002.Search in Google Scholar PubMed PubMed Central

Boyd, M. R. The NCI in vitro anticancer drug discovery screen. In Anticancer drug development guide; Humana Press: Totowa, NJ, 1997; pp. 23–42.10.1007/978-1-4615-8152-9_2Search in Google Scholar

Brown, D. G.; Sanguantrakun, N.; Schulze, B.; Schubert, U. S.; Berlinguette, C. P. Bis (tridentate) ruthenium–terpyridine complexes featuring microsecond excited-state lifetimes. J. Am. Chem. Soc. 2012, 134(30), 12354–12357; https://doi.org/10.1021/ja3039536.Search in Google Scholar PubMed

Bruno, R. D.; Njar, V. C. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg. Med. Chem. 2007, 15(15), 5047–5060; https://doi.org/10.1016/j.bmc.2007.05.046.Search in Google Scholar PubMed PubMed Central

Castonguay, A.; Doucet, C.; Juhas, M.; Maysinger, D. New ruthenium (II)–letrozole complexes as anticancer therapeutics. J. Med. Chem. 2012, 55(20), 8799–8806; https://doi.org/10.1021/jm301103y.Search in Google Scholar PubMed

Chen, Z.-F.; Qin, Q. P.; Qin, J. L.; Zhou, J.; Li, Y. L.; Liu, Y. C.; Liang, H. Water-soluble ruthenium (II) complexes with chiral 4-(2, 3-dihydroxypropyl)-formamide oxoaporphine (FOA): in vitro and in vivo anticancer activity by stabilization of G-Quadruplex DNA, inhibition of telomerase activity, and induction of tumor cell apoptosis. J. Med. Chem. 2015, 58(11), 4771–4789; https://doi.org/10.1021/acs.jmedchem.5b00444.Search in Google Scholar PubMed

Chu, Q.; Vincent, M.; Logan, D.; Mackay, J. A.; Evans, W. K. Taxanes as first-line therapy for advanced non-small cell lung cancer: a systematic review and practice guideline. Lung Cancer 2005, 50(3), 355–374; https://doi.org/10.1016/j.lungcan.2005.06.010.Search in Google Scholar PubMed

Coluccia, M.; Sava, G.; Salerno, G.; Bergamo, A.; Pacor, S.; Mestroni, G.; Alessio, E. Efficacy of 5-FU combined to Na [trans-RuCl4 (DMSO) Im], a novel selective antimetastatic agent, on the survival time of mice with P388 leukemia, P388/DDP subline and MCa mammary carcinoma. Met. Base. Drugs 1995, 2(4), 195–199; https://doi.org/10.1155/mbd.1995.195.Search in Google Scholar

Coverdale, J. P.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics 2019, 7(3), 31; https://doi.org/10.3390/inorganics7030031.Search in Google Scholar

Desoize, B. Metals and metal compounds in cancer treatment. Anticancer Res. 2004, 24(3A), 1529–1544.Search in Google Scholar

Dickson, N.; Jones, S. F.; Burris, H. A.; Ramanathan, R. K.; Weiss, G. J.; Infante, J. R.; Bendell, J. C.; McCulloch, W.; Von Hoff, D. D. A phase I dose-escalation study of NKP-1339 in patients with advanced solid tumors refractory to treatment. J. Clin. Oncol. 2011, 29, 2607; https://doi.org/10.1200/jco.2011.29.15_suppl.2607.Search in Google Scholar

Duan, L.; Fischer, A.; Xu, Y.; Sun, L. Isolated seven-coordinate Ru (IV) dimer complex with [HOHOH]− bridging ligand as an intermediate for catalytic water oxidation. J. Am. Chem. Soc. 2009, 131(30), 10397–10399; https://doi.org/10.1021/ja9034686.Search in Google Scholar PubMed

Dumat, B.; Larsen, A. F.; Wilhelmsson, L. M. Studying Z-DNA and B-to Z-DNA transitions using a cytosine analogue FRET-pair. Nucleic Acids Res. 2016, 44(11), e101; https://doi.org/10.1093/nar/gkw114.Search in Google Scholar PubMed PubMed Central

Dwyer, F.; Gyarfas, E. C.; Rogers, W. P.; Koch, J. H. Biological activity of complex ions. Nature 1952, 170(4318), 190–191; https://doi.org/10.1038/170190a0.Search in Google Scholar PubMed

Dyson, P. J.; Sava, G. Metal-based antitumour drugs in the post genomic era. Dalton Trans. 2006(16), 1929–1933; https://doi.org/10.1039/b601840h.Search in Google Scholar PubMed

Ferraro, M. G.; Piccolo, M.; Misso, G.; Maione, F.; Montesarchio, D.; Caraglia, M.; Paduano, L.; Santamaria, R.; Irace, C. Breast cancer chemotherapeutic options: a general overview on the preclinical validation of a multi-target ruthenium (III) complex lodged in nucleolipid nanosystems. Cells 2020, 9(6), 1412; https://doi.org/10.3390/cells9061412.Search in Google Scholar PubMed PubMed Central

Frik, M.; Martínez, A.; Elie, B. T.; Gonzalo, O.; Ramírez de Mingo, D.; Sanaú, M.; Sánchez-Delgado, R.; Sadhukha, T.; Prabha, S.; Ramos, J. W.; Marzo, I.; Contel, M. In vitro and in vivo evaluation of water-soluble iminophosphorane ruthenium (II) compounds. A potential chemotherapeutic agent for triple negative breast cancer. J. Med. Chem. 2014, 57(23), 9995–10012; https://doi.org/10.1021/jm5012337.Search in Google Scholar PubMed PubMed Central

Galanski, M. Recent developments in the field of anticancer platinum complexes. Recent Pat. Anti-Cancer Drug Discov. 2006, 1(2), 285–295; https://doi.org/10.2174/157489206777442287.Search in Google Scholar PubMed

Golbaghi, G.; Castonguay, A. Rationally designed ruthenium complexes for breast cancer therapy. Molecules 2020, 25(2), 265; https://doi.org/10.3390/molecules25020265.Search in Google Scholar PubMed PubMed Central

Golbaghi, G.; Pitard, I.; Lucas, M.; Haghdoost, M. M.; de los Santos, Y. L.; Doucet, N.; Patten, S. A.; Sanderson, J. T.; Castonguay, A. Synthesis and biological assessment of a ruthenium (II) cyclopentadienyl complex in breast cancer cells and on the development of zebrafish embryos. Eur. J. Med. Chem. 2020, 188, 112030; https://doi.org/10.1016/j.ejmech.2019.112030.Search in Google Scholar PubMed PubMed Central

Gourdon, L.; Cariou, K.; Gasser, G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem. Soc. Rev. 2022, 51(3), 1167–1195; https://doi.org/10.1039/d1cs00609f.Search in Google Scholar PubMed

Guedes, A. P. M.; Mello-Andrade, F.; Pires, W. C.; de Sousa, M. A. M.; da Silva, P. F. F.; de Camargo, M. S.; Gemeiner, H.; Amauri, M. A.; Gomes Cardoso, C.; de Melo Reis, P. R.; Silveira-Lacerda, E. d. P.; Batista, A. A. Heterobimetallic Ru (ii)/Fe (ii) complexes as potent anticancer agents against breast cancer cells, inducing apoptosis through multiple targets. Metallomics 2020, 12(4), 547–561; https://doi.org/10.1039/c9mt00272c.Search in Google Scholar PubMed

Halevas, E.; Pekou, A.; Papi, R.; Mavroidi, B.; Hatzidimitriou, A. G.; Zahariou, G.; Litsardakis, G.; Sagnou, M.; Pelecanou, M.; Pantazaki, A. A. Synthesis, physicochemical characterization and biological properties of two novel Cu (II) complexes based on natural products curcumin and quercetin. J. Inorg. Biochem. 2020, 208, 111083; https://doi.org/10.1016/j.jinorgbio.2020.111083.Search in Google Scholar PubMed

Hartinger, C. G.; Zorbas-Seifried, S.; Jakupec, M. A.; Kynast, B.; Zorbas, H.; Keppler, B. K. From bench to bedside–preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis (1H-indazole) ruthenate (III)](KP1019 or FFC14A). J. Inorg. Biochem. 2006, 100(5–6), 891–904; https://doi.org/10.1016/j.jinorgbio.2006.02.013.Search in Google Scholar PubMed

Hartinger, C. G.; Jakupec, M.; Zorbas‐Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P.; Keppler, B. KP1019, a new redox‐active anticancer agent–Preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers. 2008, 5(10), 2140–2155; https://doi.org/10.1002/cbdv.200890195.Search in Google Scholar PubMed

Hayat, K.; Shkeel, M.; Iqbal, M. A.; Quah, C. K.; Wong, Q. A.; Nazari, M. V.; Ahamed, M. B. K.; Hameed, S. O-Halogen-substituted arene linked selenium-N-heterocyclic carbene compounds induce significant cytotoxicity: crystal structures and molecular docking studies. J. Organomet. Chem. 2023, 985, 122593; https://doi.org/10.1016/j.jorganchem.2022.122593.Search in Google Scholar

He, X.; Chen, J.; Kandawa-Shultz, M.; Shao, G.; Wang, Y. In vitro and in vivo antitumor activity of novel half-sandwich ruthenium complexes containing quinoline derivative ligands. Dalton Trans. 2023, 52(15), 4728–4736; https://doi.org/10.1039/d2dt03317h.Search in Google Scholar PubMed

Heffeter, P.; Böck, K.; Atil, B.; Reza Hoda, M. A.; Körner, W.; Bartel, C.; Jungwirth, U.; Keppler, B. K.; Micksche, M.; Berger, W.; Koellensperger, G. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J. Biol. Inorg Chem. 2010, 15(5), 737–748; https://doi.org/10.1007/s00775-010-0642-1.Search in Google Scholar PubMed PubMed Central

Huang, H.; Zhang, P.; Chen, H.; Ji, L.; Chao, H. Comparison between polypyridyl and cyclometalated ruthenium (II) complexes: anticancer activities against 2D and 3D cancer models. Chem.--Eur. J. 2015, 21(2), 715–725; https://doi.org/10.1002/chem.201404922.Search in Google Scholar PubMed

Hudej, R.; Miklavcic, D.; Cemazar, M.; Todorovic, V.; Sersa, G.; Bergamo, A.; Sava, G.; Martincic, A.; Scancar, J.; Keppler, B. K.; Turel, I. Modulation of activity of known cytotoxic ruthenium (III) compound (KP418) with hampered transmembrane transport in electrochemotherapy in vitro and in vivo. J. Membr. Biol. 2014, 247(12), 1239–1251; https://doi.org/10.1007/s00232-014-9696-2.Search in Google Scholar PubMed

Iida, J.; Bell-Loncella, E. T.; Purazo, M. L.; Lu, Y.; Dorchak, J.; Clancy, R.; Slavik, J.; Cutler, M. L.; Shriver, C. D. Inhibition of cancer cell growth by ruthenium complexes. J. Transl. Med. 2016, 14(1), 1–10; https://doi.org/10.1186/s12967-016-0797-9.Search in Google Scholar PubMed PubMed Central

Jawiczuk, M.; Kuźmierkiewicz, N.; Nowacka, A. M.; Moreń, M.; Trzaskowski, B. Mechanistic, computational study of alkene-diazene heterofunctional cross-metathesis catalyzed by ruthenium complexes. Organometallics 2023, 2, 146–156; https://doi.org/10.1021/acs.organomet.2c00516.Search in Google Scholar

Joshi, H.; Press, M. F. Molecular oncology of breast cancer. In The Breast; Elsevier: Philadelphia, PA, 2018; p. 282–307.e5.10.1016/B978-0-323-35955-9.00022-2Search in Google Scholar

Júnior, F. S. G.; Silveira, J. A. d. M.; Holanda, T. M.; Marinho, A. D.; Ridnour, L. A.; Wink, D. A.; de Siqueira, R. J. B.; Monteiro, H. S. A.; Sousa, E. H. S. d.; Lopes, L. G. d. F. New nitrosyl ruthenium complexes with combined activities for multiple cardiovascular disorders. Dalton Trans. 2023, 52, 5176–5191; https://doi.org/10.1039/d3dt00059a.Search in Google Scholar PubMed PubMed Central

Kamal, A.; Iqbal, M. A.; Bhatti, H. N. Therapeutic applications of selenium-derived compounds. Rev. Inorg. Chem. 2018, 38(2), 49–76; https://doi.org/10.1515/revic-2018-0008.Search in Google Scholar

Kamal, A.; Muhammad Adnan Iqbal, M. A. I.; Bhatti, H. N.; Ghaffar, A. Cytotoxic, thrombolytic and antibacterial evaluation of synthesized substituted and un-substituted selenium-N-heterocyclic carbene adducts. J. Chem. Soc. Pakistan 2023, 45(128), 44–52; https://doi.org/10.52568/001198/jcsp/45.01.2023.Search in Google Scholar

Kanaoujiya, R.; Meenakshi; Srivastava, S.; Singh, R.; Mustafa, G. Recent advances and application of ruthenium complexes in tumor malignancy. Mater. Today: Proc. 2023, 72, 2822–2827; https://doi.org/10.1016/j.matpr.2022.07.098.Search in Google Scholar

Kapitza, S.; Pongratz, M.; Jakupec, M. A.; Heffeter, P.; Berger, W.; Lackinger, L.; Keppler, B. K.; Marian, B. Heterocyclic complexes of ruthenium (III) induce apoptosis in colorectal carcinoma cells. J. Cancer Res. Clin. Oncol. 2005, 131(2), 101–110; https://doi.org/10.1007/s00432-004-0617-0.Search in Google Scholar PubMed

Katheria, S. Ruthenium complexes as potential cancer cell growth inhibitors for targeted chemotherapy. ChemistrySelect 2022, 7(29), e202201645; https://doi.org/10.1002/slct.202201645.Search in Google Scholar

Khamis, Z. I.; Pang, X.; Cui, Z.; Sang, Q. X. A.; Zhang, J. Cytochrome P450-2D6: a novel biomarker in liver cancer health disparity. PLoS One 2021, 16(10), e0257072; https://doi.org/10.1371/journal.pone.0257072.Search in Google Scholar PubMed PubMed Central

Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 2006, 13(9), 1085–1107; https://doi.org/10.2174/092986706776360941.Search in Google Scholar PubMed

Kuang, S.-M.; Cuttell, D. G.; McMillin, D. R.; Fanwick, P. E.; Walton, R. A. Synthesis and structural characterization of Cu (I) and Ni (II) complexes that contain the Bis [2-(diphenylphosphino) phenyl] ether ligand. Novel emission properties for the Cu (I) species. Inorg. Chem. 2002, 41(12), 3313–3322; https://doi.org/10.1021/ic0201809.Search in Google Scholar PubMed

Kundu, B. K.; Mukhopadhyay, S. Target based chemotherapeutic advancement of ruthenium complexes. Coord. Chem. Rev. 2021, 448, 214169; https://doi.org/10.1016/j.ccr.2021.214169.Search in Google Scholar

Larina, V.; Babich, O.; Zhikhreva, A.; Ivanova, S.; Chupakhin, E. The use of metal-organic frameworks as heterogeneous catalysts. Rev. Inorg. Chem. 2022; https://doi.org/10.1515/revic-2022-0020.Search in Google Scholar

Lazarević, T.; Rilak, A.; Bugarčić, Ž. D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017, 142, 8–31; https://doi.org/10.1016/j.ejmech.2017.04.007.Search in Google Scholar PubMed

Lee, S. L. C.; Rouhi, P.; Jensen, L. D.; Zhang, D.; Ji, H.; Hauptmann, G.; Ingham, P.; Cao, Y. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc. Natl. Acad. Sci. USA 2009, 106(46), 19485–19490; https://doi.org/10.1073/pnas.0909228106.Search in Google Scholar PubMed PubMed Central

Lee, S. Y.; Kim, C. Y.; Nam, T.-G. Ruthenium complexes as anticancer agents: a brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375; https://doi.org/10.2147/dddt.s275007.Search in Google Scholar PubMed PubMed Central

Li, Y.; Drabsch, Y.; Pujuguet, P.; Ren, J.; van Laar, T.; Zhang, L.; van Dam, H.; Clément-Lacroix, P.; Ten Dijke, P. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015, 17(1), 1–16.10.1186/s13058-015-0537-8Search in Google Scholar PubMed PubMed Central

Li, Z. Y.; Shen, Q.; Mao, Z.; Tan, C. Rising interest in the development of metal complexes in cancer immunotherapy. Chem.--Asian J. 2022, 17(13), e202200270; https://doi.org/10.1002/asia.202200270.Search in Google Scholar PubMed

Lin, K.; Zhao, Z. Z.; Bo, H. B.; Hao, X. J.; Wang, J. Q. Applications of ruthenium complex in tumor diagnosis and therapy. Front. Pharmacol. 2018, 9, 1323; https://doi.org/10.3389/fphar.2018.01323.Search in Google Scholar PubMed PubMed Central

Liu, X.-W.; Li, J.; Li, H.; Zheng, K. C.; Chao, H.; Ji, L. N. Synthesis, characterization, DNA-binding and photocleavage of complexes [Ru (phen) 2 (6-OH-dppz)] 2+ and [Ru (phen) 2 (6-NO2-dppz)] 2+. J. Inorg. Biochem. 2005, 99(12), 2372–2380; https://doi.org/10.1016/j.jinorgbio.2005.09.004.Search in Google Scholar PubMed

Lord, C. J.; Ashworth, A. The DNA damage response and cancer therapy. Nature 2012, 481(7381), 287–294; https://doi.org/10.1038/nature10760.Search in Google Scholar PubMed

McGhie, B. S.; Aldrich-Wright, J. R. Photoactive and luminescent transition metal complexes as anticancer agents: a guiding light in the search for new and improved cancer treatments. Biomedicines 2022, 10(3), 578; https://doi.org/10.3390/biomedicines10030578.Search in Google Scholar PubMed PubMed Central

Meanwell, N. A. Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem. Res. Toxicol. 2016, 29(4), 564–616; https://doi.org/10.1021/acs.chemrestox.6b00043.Search in Google Scholar PubMed

Mejía, Y. R.; Romero Romero, F.; Basavanag Unnamatla, M. V.; Ballesteros Rivas, M. F.; Varela Guerrero, V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. Rev. Inorg. Chem. 2022, 43, 325–355; https://doi.org/10.1515/revic-2022-0014.Search in Google Scholar

Murillo, M. I.; Gaiddon, C.; Le Lagadec, R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front. Chem. 2022, 10, 967337; https://doi.org/10.3389/fchem.2022.967337.Search in Google Scholar PubMed PubMed Central

Nagy, E. M.; Pettenuzzo, A.; Boscutti, G.; Marchiò, L.; Dalla Via, L.; Fregona, D. Ruthenium (II/III)‐Based compounds with encouraging antiproliferative activity against non‐small‐cell lung cancer. Chem.--Eur. J. 2012, 18(45), 14464–14472; https://doi.org/10.1002/chem.201202171.Search in Google Scholar PubMed

Ndagi, U.; Mhlongo, N.; Soliman, M. E. Metal complexes in cancer therapy–an update from drug design perspective. Drug Des. Dev. Ther. 2017, 11, 599; https://doi.org/10.2147/dddt.s119488.Search in Google Scholar PubMed PubMed Central

Nhukeaw, T.; Temboot, P.; Hansongnern, K.; Ratanaphan, A. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium (II) complexes containing chloro-substituted phenylazopyridine. BMC Cancer 2014, 14(1), 1–19; https://doi.org/10.1186/1471-2407-14-73.Search in Google Scholar PubMed PubMed Central

Nounou, M. I.; ElAmrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer Basic Clin. Res. 2015, 9, 17–34. https://doi.org/10.4137/bcbcr.s29420.Search in Google Scholar

Núñez, C.; Estévez, S. V.; del Pilar Chantada, M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J. Biol. Inorg Chem. 2018, 23(3), 331–345; https://doi.org/10.1007/s00775-018-1542-z.Search in Google Scholar PubMed

Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev. 2022, 452, 214307; https://doi.org/10.1016/j.ccr.2021.214307.Search in Google Scholar

Pfister, C. U.; Martoni, A.; Zamagni, C.; Lelli, G.; De Braud, F.; Souppart, C.; Duval, M.; Hornberger, U. Effect of age and single versus multiple dose pharmacokinetics of letrozole (Femara®) in breast cancer patients. Biopharm Drug Dispos. 2001, 22(5), 191–197; https://doi.org/10.1002/bdd.273.Search in Google Scholar PubMed

Popolin, C. P.; Cominetti, M. R. A review of ruthenium complexes activities on breast cancer cells. Mini Rev. Med. Chem. 2017, 17(15), 1435–1441; https://doi.org/10.2174/1389557517666170206151218.Search in Google Scholar PubMed

Poynton, F. E.; Bright, S. A.; Blasco, S.; Williams, D. C.; Kelly, J. M.; Gunnlaugsson, T. The development of ruthenium (II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev. 2017, 46(24), 7706–7756; https://doi.org/10.1039/c7cs00680b.Search in Google Scholar PubMed

Prachayasittikul, V.; Pingaew, R.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives. Drug Des. Dev. Ther. 2014, 8, 1089; https://doi.org/10.2147/dddt.s67300.Search in Google Scholar PubMed PubMed Central

Prudent, J.; Popgeorgiev, N.; Gadet, R.; Deygas, M.; Rimokh, R.; Gillet, G. Mitochondrial Ca2+ uptake controls actin cytoskeleton dynamics during cell migration. Sci. Rep. 2016, 6(1), 1–13; https://doi.org/10.1038/srep36570.Search in Google Scholar PubMed PubMed Central

Qian, C.; Wang, J. Q.; Song, C. L.; Wang, L. L.; Ji, L. N.; Chao, H. The induction of mitochondria-mediated apoptosis in cancer cells by ruthenium (II) asymmetric complexes. Metallomics 2013, 5(7), 844–854; https://doi.org/10.1039/c3mt20270d.Search in Google Scholar PubMed

Qiu, K.; Wen, Y.; Ouyang, C.; Liao, X.; Liu, C.; Rees, T. W.; Zhang, Q.; Ji, L.; Chao, H. The stepwise photodamage of organelles by two-photon luminescent ruthenium (ii) photosensitizers. Chem. Commun. 2019, 55(75), 11235–11238; https://doi.org/10.1039/c9cc05962h.Search in Google Scholar PubMed

Rajendiran, V.; Karthik, R.; Palaniandavar, M.; Stoeckli-Evans, H.; Periasamy, V. S.; Akbarsha, M. A.; Srinag, B. S.; Krishnamurthy, H. Mixed-ligand copper (II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg. Chem. 2007, 46(20), 8208–8221; https://doi.org/10.1021/ic700755p.Search in Google Scholar PubMed

Ramadevi, P.; Singh, R.; Jana, S. S.; Devkar, R.; Chakraborty, D. Ruthenium complexes of ferrocene mannich bases: DNA/BSA interactions and cytotoxicity against A549 cell line. J. Photochem. Photobiol. Chem. 2015, 305, 1–10; https://doi.org/10.1016/j.jphotochem.2015.02.010.Search in Google Scholar

Raza, A.; Parveen, S.; Majeed, M. I.; Nawaz, H.; Javed, M. R.; Iqbal, M. A.; Rashid, N.; Haider, M. Z.; Ali, M. Z.; Sabir, A.; Mahmood ul Hasan, H.; Majeed, B. Surface-enhanced Raman spectral characterization of antifungal activity of selenium and zinc based organometallic compounds. Spectrochim. Acta Mol. Biomol. Spectrosc. 2023, 285, 121903; https://doi.org/10.1016/j.saa.2022.121903.Search in Google Scholar PubMed

Schreiber-Brynzak, E.; Klapproth, E.; Unger, C.; Lichtscheidl-Schultz, I.; Göschl, S.; Schweighofer, S.; Trondl, R.; Dolznig, H.; Jakupec, M. A.; Keppler, B. K. Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs. Invest. N. Drugs 2015, 33(4), 835–847; https://doi.org/10.1007/s10637-015-0260-4.Search in Google Scholar PubMed

Shahzad, K.; Majid, A. S. A.; Khan, M.; Iqbal, M. A.; Ali, A. Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals. Rev. Inorg. Chem. 2021, 41(3), 151–198; https://doi.org/10.1515/revic-2020-0021.Search in Google Scholar

Shahzad, K.; Asad, M.; Asiri, A. M.; Irfan, M.; Iqbal, M. A. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. Rev. Inorg. Chem. 2023, 43(1), 33–47; https://doi.org/10.1515/revic-2021-0040.Search in Google Scholar

Shakeri, A.; Panahi, Y.; Johnston, T. P.; Sahebkar, A. Biological properties of metal complexes of curcumin. Biofactors 2019, 45(3), 304–317; https://doi.org/10.1002/biof.1504.Search in Google Scholar PubMed

Shen, X.; Garces, L. J.; Ding, Y.; Laubernds, K.; Zerger, R. P.; Aindow, M.; Neth, E. J.; Suib, S. L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses. Appl. Catal. Gen. 2008, 335(2), 187–195; https://doi.org/10.1016/j.apcata.2007.11.017.Search in Google Scholar

Shen, J.; Kim, H. C.; Wolfram, J.; Mu, C.; Zhang, W.; Liu, H.; Xie, Y.; Mai, J.; Zhang, H.; Li, Z.; Guevara, M.; Mao, Z. W.; Shen, H. A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Lett. 2017, 17(5), 2913–2920; https://doi.org/10.1021/acs.nanolett.7b00132.Search in Google Scholar PubMed PubMed Central

Shum, J.; Leung, P.K.-K.; Lo, K.K.-W. Luminescent ruthenium (ii) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem. 2019, 58(4), 2231–2247; https://doi.org/10.1021/acs.inorgchem.8b02979.Search in Google Scholar PubMed

Shutkov, I.; Antonets, A. A.; Tyurin, V. Y.; Milaeva, E. R.; Nazarov, A. A. Ruthenium (III) complexes of NAMI-A type with ligands based on lonidamine and bexarotene as antiproliferative agents. Russ. J. Inorg. Chem. 2021, 66(4), 502–509; https://doi.org/10.1134/s0036023621030177.Search in Google Scholar

Smith, C. A.; Sutherland-Smith, A. J.; Kratz, F.; Baker, E. N.; Keppler, B. H. Binding of ruthenium (III) anti-tumor drugs to human lactoferrin probed by high resolution X-ray crystallographic structure analyses. J. Biol. Inorg Chem. 1996, 1(5), 424–431; https://doi.org/10.1007/s007750050074.Search in Google Scholar

Soriano-Giles, G.; Giles-Mazón, E. A.; Lopez, N.; Reinheimer, E.; Varela-Guerrero, V.; Ballesteros-Rivas, M. F. Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review. Rev. Inorg. Chem. 2022, 43, 201–219; https://doi.org/10.1515/revic-2022-0004.Search in Google Scholar

Stolyarova, E. D.; Mikhailov, A. A.; Ulantikov, A. A.; Eremina, J. A.; Klyushova, L. S.; Kuratieva, N. V.; Nadolinny, V. A.; Kostin, G. A. Blue-to-red light triggered nitric oxide release in cytotoxic/cytostatic ruthenium nitrosyl complexes bearing biomimetic ligands. J. Photochem. Photobiol. Chem. 2021, 421, 113520; https://doi.org/10.1016/j.jphotochem.2021.113520.Search in Google Scholar

Sudhindra, P.; Ajay Sharma, S.; Roy, N.; Moharana, P.; Paira, P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: a review. Polyhedron 2020, 192, 114827; https://doi.org/10.1016/j.poly.2020.114827.Search in Google Scholar

Sumithaa, C.; Ganeshpandian, M. Half-Sandwich ruthenium arene complexes bearing clinically approved drugs as ligands: the importance of metal–drug synergism in metallodrug design. Mol. Pharm. 2023, 20(3), 1453–1479; https://doi.org/10.1021/acs.molpharmaceut.2c01027.Search in Google Scholar PubMed

Süss-Fink, G. Arene ruthenium complexes as anticancer agents. Dalton Trans. 2010, 39(7), 1673–1688; https://doi.org/10.1039/b916860p.Search in Google Scholar PubMed

Tan, C.; Lai, S.; Wu, S.; Hu, S.; Zhou, L.; Chen, Y.; Wang, M.; Zhu, Y.; Lian, W.; Peng, W.; Ji, L.; Xu, A. Nuclear permeable ruthenium (II) β-carboline complexes induce autophagy to antagonize mitochondrial-mediated apoptosis. J. Med. Chem. 2010, 53(21), 7613–7624; https://doi.org/10.1021/jm1009296.Search in Google Scholar PubMed

Tan, X.; Jiang, X.; He, Y.; Zhong, F.; Li, X.; Xiong, Z.; Li, Z.; Liu, X.; Cui, C.; Zhao, Q.; Xie, Y.; Yang, F.; Wu, C.; Shen, J.; Zheng, M.; Wang, Z.; Jiang, H. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning. Eur. J. Med. Chem. 2020, 204, 112572; https://doi.org/10.1016/j.ejmech.2020.112572.Search in Google Scholar PubMed

Thota, S.; Rodrigues, D. A.; Crans, D. C.; Barreiro, E. J. Ru (II) compounds: next-generation anticancer metallotherapeutics? J. Med. Chem. 2018, 61(14), 5805–5821; https://doi.org/10.1021/acs.jmedchem.7b01689.Search in Google Scholar PubMed

Trondl, R.; Heffeter, P.; Kowol, C. R.; Jakupec, M. A.; Berger, W.; Keppler, B. K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 2014, 5, 2925–2932; https://doi.org/10.1039/c3sc53243g.Search in Google Scholar

Tulotta, C.; Stefanescu, C.; Beletkaia, E.; Bussmann, J.; Tarbashevich, K.; Schmidt, T.; Snaar-Jagalska, B. E. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis. Models Mech. 2016, 9(2), 141–153; https://doi.org/10.1242/dmm.023275.Search in Google Scholar PubMed PubMed Central

Vincent, J. B.; Love, S. The binding and transport of alternative metals by transferrin. Biochim. Biophys. Acta Gen. Subj. 2012, 1820(3), 362–378; https://doi.org/10.1016/j.bbagen.2011.07.003.Search in Google Scholar PubMed

Wang, X.; Guo, Z. Targeting and delivery of platinum-based anticancer drugs. Chem. Soc. Rev. 2013, 42(1), 202–224; https://doi.org/10.1039/c2cs35259a.Search in Google Scholar PubMed

Wang, Z.; Li, J.; Lin, G.; He, Z.; Wang, Y. Metal complex-based liposomes: applications and prospects in cancer diagnostics and therapeutics. J. Contr. Release 2022, 348, 1066–1088; https://doi.org/10.1016/j.jconrel.2022.06.012.Search in Google Scholar PubMed

Wu, B.-Y.; Gao, L. H.; Duan, Z. M.; Wang, K. Z. Syntheses and DNA-binding studies of two ruthenium (II) complexes containing one ancillary ligand of bpy or phen:[Ru (bpy)(pp [2, 3] p) 2](ClO4) 2 and [Ru (phen)(pp [2, 3] p) 2](ClO4) 2. J. Inorg. Biochem. 2005, 99(8), 1685–1691; https://doi.org/10.1016/j.jinorgbio.2005.05.012.Search in Google Scholar PubMed

Yuan, R.-X.; Xiong, R. G.; Abrahams, B. F.; Lee, G. H.; Peng, S. M.; Che, C. M.; You, X. Z. A Cu (I) coordination polymer employing a nonsteroidal aromatase inhibitor letrozole as a building block. J. Chem. Soc., Dalton Trans. 2001(14), 2071–2073; https://doi.org/10.1039/b104880p.Search in Google Scholar

Zamora, A.; Denning, C. A.; Heidary, D. K.; Wachter, E.; Nease, L. A.; Ruiz, J.; Glazer, E. C. Ruthenium-containing P450 inhibitors for dual enzyme inhibition and DNA damage. Dalton Trans. 2017, 46(7), 2165–2173; https://doi.org/10.1039/c6dt04405k.Search in Google Scholar PubMed

Zeng, L.; Chen, Y.; Liu, J.; Huang, H.; Guan, R.; Ji, L.; Chao, H. Ruthenium (II) complexes with 2-phenylimidazo [4, 5-f] [1, 10] phenanthroline derivatives that strongly combat cisplatin-resistant tumor cells. Sci. Rep. 2016, 6(1), 1–13; https://doi.org/10.1038/srep19449.Search in Google Scholar PubMed PubMed Central

Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z. S. The development of anticancer ruthenium (II) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46(19), 5771–5804; https://doi.org/10.1039/c7cs00195a.Search in Google Scholar PubMed PubMed Central

Zhang, Z.; Wu, Q.; Wu, X. H.; Sun, F. Y.; Chen, L. M.; Chen, J. C.; Yang, S. L.; Mei, W. J. Ruthenium (II) complexes as apoptosis inducers by stabilizing c-myc G-quadruplex DNA. Eur. J. Med. Chem. 2014, 80, 316–324; https://doi.org/10.1016/j.ejmech.2014.04.070.Search in Google Scholar PubMed

Zhao, X.; Li, L.; Yu, G.; Zhang, S.; Li, Y.; Wu, Q.; Huang, X.; Mei, W. Nucleus-enriched ruthenium polypyridine complex acts as a potent inhibitor to suppress triple-negative breast cancer metastasis in vivo. Comput. Struct. Biotechnol. J. 2019, 17, 21–30; https://doi.org/10.1016/j.csbj.2018.11.010.Search in Google Scholar PubMed PubMed Central

Received: 2023-03-25
Accepted: 2023-07-13
Published Online: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2023-0010/html
Scroll to top button