Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2022

Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior

  • Huan Su , Lai Hu , Senqiang Zhu EMAIL logo , Jiapeng Lu , Jinyang Hu , Rui Liu ORCID logo EMAIL logo and Hongjun Zhu EMAIL logo

Abstract

Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.


Corresponding authors: Senqiang Zhu, Rui Liu, and Hongjun Zhu, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China, E-mail: (S. Zhu), (R. Liu), (H. Zhu)
Huan Su and Lai Hu contributed equally.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21602106

Funding source: Natural Science Foundation of Jiangsu Province

Award Identifier / Grant number: BK20220351

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work has the privilege of support from the Natural Science Foundation of Jiangsu Province (BK20220351), the Jiangsu Planned Projects for Postdoctoral Research Funds (2021K136B), the National Natural Science Foundation of China (21602106), the Undergraduate Innovation and Entrepreneurship Training Program (202010291144Y) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmad, S.; Liu, J.; Gong, C.; Zhao, J.; Sun, L. Photon Up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent. ACS Appl. Mater. Interfaces 2018, 1, 249–253, https://doi.org/10.1021/acsaem.7b00023.Search in Google Scholar

Amaral, A. M.; Jorge, K. C.; de Araújo, C. B.; Menezes, L. d. S. Toward single-shot characterization of nonlinear optical refraction, absorption, and scattering of turbid media. Phys. Rev. 2020, 102, 033503, https://doi.org/10.1103/physreva.102.033503.Search in Google Scholar

Asadi, R.; Ouyang, Z. B. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer. Opt Commun. 2018, 411, 148–151, https://doi.org/10.1016/j.optcom.2017.11.030.Search in Google Scholar

Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963, https://doi.org/10.1002/adma.201870172.Search in Google Scholar

Biswal, B. P.; Valligatla, S.; Wang, M.; Banerjee, T.; Saad, N. A.; Chandrasekhar, N.; Becker, D.; Feng, X. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks. Angew. Chem. Int. Ed. 2019, 58, 6896–6900, https://doi.org/10.1002/ange.201814412.Search in Google Scholar

Chateau, D.; Chaput, F.; Lopes, C.; Lindgren, M.; Brannlund, C.; Ohgren, J.; Djourelov, N.; Nedelec, P.; Desroches, C.; Eliasson, B.; Kindahl, T.; Lerouge, F.; Andraud, C.; Parola, S. Silica hybrid sol-gel materials with unusually high concentration of Pt-organic molecular guests: studies of luminescence and nonlinear absorption of light. ACS Appl. Mater. Interfaces 2012, 4, 2369–2377, https://doi.org/10.1021/am2015537.Search in Google Scholar PubMed

Che, C. M.; Kwok, C.-C.; Lai, S.-W.; Rausch, A. F.; Finkenzeller, W. J.; Zhu, N.; Yersin, H. Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chem. Eur. J. 2010, 16, 233–247, https://doi.org/10.1002/chem.200902183.Search in Google Scholar PubMed

Chen, Y.; Bai, T.; Dong, N.; Fan, F.; Zhang, S.; Zhuang, X.; Sun, J.; Zhang, B.; Zhang, X.; Wang, J.; Blau, W. J. Graphene and its derivatives for laser protection. Prog. Mater. Sci. 2016, 84, 118–157, https://doi.org/10.1016/j.pmatsci.2016.09.003.Search in Google Scholar

Chen, K.; Hussain, M.; Razi, S. S.; Hou, Y.; Yildiz, E. A.; Zhao, J.; Yaglioglu, H. G.; Donato, M. D. Anthryl-appended platinum(II) Schiff base complexes: exceptionally small Stokes shift, triplet excited states equilibrium, and application in triplet–triplet-annihilation upconversion. Inorg. Chem. 2020, 59, 14731–14745, https://doi.org/10.1021/acs.inorgchem.0c01932.Search in Google Scholar PubMed

Clarke, R. M.; Storr, T. The chemistry and applications of multimetallic salen complexes. Dalton Trans. 2014, 43, 9380–9391, https://doi.org/10.1039/c4dt00591k.Search in Google Scholar PubMed

Colombo, A.; Dragonetti, C.; Guerchais, V.; Hierlinger, C.; Zysman-Colman, E.; Roberto, D. A trip in the nonlinear optical properties of iridium complexes. Coord. Chem. Rev. 2020, 414, 213293, https://doi.org/10.1016/j.ccr.2020.213293.Search in Google Scholar

Colombo, A.; Dragonetti, C.; Guerchais, V.; Roberto, D. An excursion in the second-order nonlinear optical properties of platinum complexes. Coord. Chem. Rev. 2021, 446, 214113, https://doi.org/10.1016/j.ccr.2021.214113.Search in Google Scholar

Dini, D.; Calvete, M. J.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233, https://doi.org/10.1021/acs.chemrev.6b00033.Search in Google Scholar PubMed

Dubinina, G. G.; Price, R. S.; Abboud, K. A.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Phenylene vinylene platinum(II) acetylides with prodigious two-photon absorption. J. Am. Chem. Soc. 2012, 134, 19346–19349, https://doi.org/10.1021/ja309393c.Search in Google Scholar PubMed

Escudero, D.; Thiel, W.; Champagne, B. Spectroscopic and second–order nonlinear optical properties of Ruthenium(II) complexes: a DFT/MRCI and ADC(2) study. Phys. Chem. Chem. Phys. 2015, 17, 18908–18912, https://doi.org/10.1039/c5cp01884f.Search in Google Scholar PubMed

Fan, Y.; Zhao, D. Triangular platinum(II) metallacycles: syntheses, photophysics, and nonlinear optics. ACS Appl. Mater. Interfaces 2015, 7, 6162–6171.10.1021/am509074mSearch in Google Scholar PubMed

Fang, B.; Zhu, Y.; Hu, L.; Shen, Y.; Jiang, G.; Zhang, Q.; Tian, X.; Li, S.; Zhou, H.; Wu, J.; Tian, Y. Series of CˆNˆC cyclometalated Pt(II) complexes: synthesis, crystal structures, and nonlinear optical properties in the near-infrared region. Inorg. Chem. 2018, 57, 14134–14143, https://doi.org/10.1021/acs.inorgchem.8b01967.Search in Google Scholar PubMed

Four, M.; Riehl, D.; Mongin, O.; Blanchard-Desce, M.; Lawson-Daku, L. M.; Moreau, J.; Chauvin, J.; Delaire, J. A.; Lemercier, G. A novel ruthenium(II) complex for two-photon absorption-based optical power limiting in the near-IR range. Phys. Chem. Chem. Phys. 2011, 13, 17304–17312, https://doi.org/10.1039/c1cp21661a.Search in Google Scholar PubMed

Fu, S.; Zhu, X.; Zhou, G.; Wong, W. Y.; Ye, C.; Wong, W. K.; Li, Z. Synthesis, structures and optical power limiting of some transition metal and lanthanide monoporphyrinate complexes containing electron‐rich diphenylamino substituents. Eur. J. Inorg. Chem. 2007, 2007, 2004–2013, https://doi.org/10.1002/ejic.200601190.Search in Google Scholar

Girardot, C.; Cao, B.; Mulatier, J.-C.; Baldeck, P. L.; Chauvin, J.; Riehl, D.; Delaire, J. A.; Andraud, C.; Lemercier, G. Ruthenium(II) complexes for two-photon absorption-based optical power limiting. ChemPhysChem 2008, 9, 1531–1535, https://doi.org/10.1002/cphc.200800186.Search in Google Scholar PubMed

Goswami, S.; Winkel, R. W.; Schanze, K. S. Photophysics and nonlinear absorption of gold(I) and platinum(II) donor-acceptor-donor chromophores. Inorg. Chem. 2015, 54, 10007–10014, https://doi.org/10.1021/acs.inorgchem.5b01767.Search in Google Scholar PubMed

Gu, Z. G.; Li, D. J.; Zheng, C.; Kang, Y.; Woll, C.; Zhang, J. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications. Angew. Chem. Int. Ed. 2017, 56, 6853–6858, https://doi.org/10.1002/ange.201702162.Search in Google Scholar

Han, G.; Li, G.; Huang, J.; Han, C.; Turro, C.; Sun, Y. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat. Commun. 2022, 13, 2288–2290, https://doi.org/10.1038/s41467-022-29981-3.Search in Google Scholar PubMed PubMed Central

Hou, Y.; Li, S.; Zhang, Z.; Chen, L.; Zhang, M. A fluorescent platinum(II) metallacycle-cored supramolecular network formed by dynamic covalent bonds and its application in halogen ions and picric acid detection. Polym. Chem. 2020, 11, 254–258, https://doi.org/10.1039/c9py00895k.Search in Google Scholar

Icsel, C.; Yilmaz, V. T.; Aygun, M.; Cevatemre, B.; Alper, P.; Ulukaya, E. Palladium(II) and platinum(II) saccharinate complexes with bis(diphenylphosphino)methane/ethane: synthesis, S-phase arrest and ROS-mediated apoptosis in human colon cancer cells. Dalton Trans. 2018, 47, 11397–11410, https://doi.org/10.1039/c8dt02389a.Search in Google Scholar PubMed

Kindahl, T.; Ellingsen, P. G.; Lopes, C.; Brannlund, C.; Lindgren, M.; Eliasson, B. Photophysical and DFT characterization of novel Pt(II)-coupled 2, 5-diaryloxazoles for nonlinear optical absorption. J. Phys. Chem. A 2012, 116, 11519–11530, https://doi.org/10.1021/jp307312v.Search in Google Scholar PubMed

Katturi, N. K.; Reddy, G.; Biswas, C.; Kumar Raavi, S. S.; Giribabu, L.; Soma, V. R. Ultrafast nonlinear optical properties and excited-state dynamics of Soret-band excited D-π-D porphyrins. Opt. Mater. 2020, 107, 110041, https://doi.org/10.1016/j.optmat.2020.110041.Search in Google Scholar

Lemercier, G.; Four, M.; Chevreux, S. Two-photon absorption properties of 1, 10-phenanthroline-based Ru(II) complexes and related functionalized nanoparticles for potential application in two-photon excitation photodynamic therapy and optical power limiting. Coord. Chem. Rev. 2018, 368, 1–12, https://doi.org/10.1016/j.ccr.2018.03.019.Search in Google Scholar

Li, Q.; Guo, H.; Ma, L.; Wu, W.; Liu, Y.; Zhao, J. Tuning the photophysical properties of NˆN Pt(II) bisacetylide complexes with fluorene moiety and its applications for triplet–triplet-annihilation based upconversion. J. Mater. Chem. 2012, 22, 5319–5329, https://doi.org/10.1039/c2jm15678d.Search in Google Scholar

Li, Y.; Liu, R.; Badaeva, E.; Kilina, S.; Sun, W. Long-Lived π-shape platinum(II) diimine complexes bearing 7-benzothiazolylfluoren-2-yl motif on the bipyridine and acetylide ligands: admixing π, π* and charge-transfer configurations. J. Phys. Chem. C 2013, 117, 5908–5918, https://doi.org/10.1021/jp312642g.Search in Google Scholar

Li, Z. J.; Cui, P.; Wang, C. Z.; Kilina, S.; Sun, W. F. Nonlinear absorbing cationic bipyridyl iridium(III) complexes bearing cyclometalating ligands with different degrees of pi-conjugation: synthesis, photophysics, and reverse saturable absorption. J. Phys. Chem. C 2014a, 118, 28764–28775, https://doi.org/10.1021/jp5073457.Search in Google Scholar

Li, Y.; Dandu, N.; Liu, R.; Kilina, S.; Sun, W. Synthesis and photophysics of reverse saturable absorbing heteroleptic iridium(III) complexes bearing 2-(7-R-fluoren-2’-yl)pyridine ligands. Dalton Trans. 2014b, 43, 1724–1735, https://doi.org/10.1039/c3dt52184b.Search in Google Scholar PubMed

Li, B.; Cui, Z.; Han, Y.; Ding, J.; Jiang, Z.; Zhang, Y. Novel axially substituted lanthanum phthalocyanines: synthesis, photophysical and nonlinear optical properties. Dyes Pigments 2020, 179, 108407, https://doi.org/10.1016/j.dyepig.2020.108407.Search in Google Scholar

Liao, C.; Shelton, A. H.; Kim, K. Y.; Schanze, K. S. Organoplatinum chromophores for application in high-performance nonlinear absorption materials. ACS Appl. Mater. Interfaces 2011, 3, 3225–3238.10.1021/am200491ySearch in Google Scholar PubMed

Liu, X. G.; Sun, W. Synthesis, photophysics, and reverse saturable absorption of bipyridyl platinum(II) bis(acetylide) complexes bearing aromatic electron-withdrawing substituents on the acetylide ligands. J. Phys. Chem. 2014, 118, 10318–10325, https://doi.org/10.1021/jp500397g.Search in Google Scholar PubMed

Liu, C. G.; Qiu, Y.-Q.; Sun, S.-L.; Chen, H.; Li, N.; Su, Z.-M. DFT study on second-order nonlinear optical properties of a series of mono Schiff-base M(II) (M=Ni, Pd, Pt) complexes. Chem. Phys. Lett. 2006, 429, 570–574, https://doi.org/10.1016/j.cplett.2006.07.097.Search in Google Scholar

Liu, Z.; Xu, Y.; Zhang, X.; Zhang, X.; Chen, Y.; Tian, J. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681–9686, https://doi.org/10.1021/jp9004357.Search in Google Scholar PubMed

Liu, R.; Zhou, D.; Azenkeng, A.; Li, Z.; Li, Y.; Glusac, K. D.; Sun, W. Nonlinear absorbing platinum(II) diimine complexes: synthesis, photophysics, and reverse saturable absorption. Chem. Eur J. 2012, 18, 11440–11448, https://doi.org/10.1002/chem.201200254.Search in Google Scholar PubMed

Liu, R.; Dandu, N.; Li, Y.; Kilina, S.; Sun, W. Synthesis, photophysics and reverse saturable absorption of bipyridyl platinum(II) bis(arylfluorenylacetylide) complexes. Dalton Trans. 2013, 42, 4398–4409, https://doi.org/10.1039/c2dt32153j.Search in Google Scholar PubMed

Liu, R.; Dandu, N.; Chen, J.; Li, Y.; Li, Z.; Liu, S.; Wang, C.; Kilina, S.; Kohler, B.; Sun, W. Influence of different diimine (NˆN) ligands on the photophysics and reverse saturable absorption of heteroleptic cationic iridium(III) complexes bearing cyclometalating 2-(3-(7-(Benzothiazol-2-yl)fluoren-2-yl)phenyl)pyridine (CˆN) ligands. J. Phys. Chem. C 2014, 118, 23233–23246, https://doi.org/10.1021/jp506765k.Search in Google Scholar

Liu, F.; Xiao, H.; Yang, Y.; Wang, H.; Zhang, H.; Liu, J.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: the role of donor groups. Dyes Pigments 2016, 130, 138–147, https://doi.org/10.1016/j.dyepig.2016.03.003.Search in Google Scholar

Liu, R.; Zhu, S. Q.; Lu, J. P.; Shi, H.; Zhu, H. J. Pt(II) diimine complexes bearing difluoro-boron-dipyrromethene acetylide ligands: synthesis, photophysics, aggregation included emission and optical power limiting properties. Dyes Pigments 2017a, 147, 291–299, https://doi.org/10.1016/j.dyepig.2017.08.024.Search in Google Scholar

Liu, R.; Shu, M.; Shi, H.; Zhu, S.; Hu, J.; Zhu, H. Synthesis and photophysical properties of cyclometalated 4′-phenyl-2, 2′:6′, 2″-terpyridyl Pt(II) chloride complexes with different aryl substituents. Inorg. Chem. Commun. 2017b, 80, 65–68, https://doi.org/10.1016/j.inoche.2017.04.014.Search in Google Scholar

Liu, B.; Lystrom, L.; Kilina, S.; Sun, W. Tuning the ground state and excited state properties of monocationic iridium(III) complexes by varying the site of benzannulation on diimine ligand. Inorg. Chem. 2017c, 56, 5361–5370, https://doi.org/10.1021/acs.inorgchem.7b00467.Search in Google Scholar PubMed

Liu, R.; Hu, J.; Zhu, S.; Lu, J.; Zhu, H. Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes. ACS Appl. Mater. Interfaces 2017d, 9, 33029–33040, https://doi.org/10.1021/acsami.7b10585.Search in Google Scholar PubMed

Liu, B.; Lystrom, L.; Cameron, C. G.; Kilina, S.; McFarland, S. A.; Sun, W. Monocationic iridium(III) complexes with far–red charge-transfer absorption and near-IR emission: synthesis, photophysics, and reverse saturable absorption. Eur. J. Inorg. Chem. 2019a, 2019, 2208–2215, https://doi.org/10.1002/ejic.201900156.Search in Google Scholar

Liu, B.; Lystrom, L.; Kilina, S.; Sun, W. Effects of varying the benzannulation site and π-conjugation of the cyclometalating ligand on the photophysics and reverse saturable absorption of monocationic iridium(III) complexes. Inorg. Chem. 2019b, 58, 476–488, https://doi.org/10.1021/acs.inorgchem.8b02714.Search in Google Scholar PubMed

Liu, Z.; Sun, J.; Yan, C.; Xie, Z.; Zhang, G.; Shao, X.; Zhang, D.; Zhou, S. Diketopyrrolopyrrole based donor–acceptor π-conjugated copolymers with near-infrared absorption for 532 and 1064 nm nonlinear optical materials. J. Mater. Chem. C 2020a, 8, 12993–13000, https://doi.org/10.1039/d0tc02901g.Search in Google Scholar

Liu, Z.; Xu, Y.; Yue, L.; Li, M.; Yang, X.; Sun, Y.; Yan, L.; Zhou, G. Iridium(iii) complexes with the dithieno[3, 2-b:2’, 3’-d]phosphole oxide group and their high optical power limiting performances. Dalton Trans. 2020b, 49, 4967–4976, https://doi.org/10.1039/d0dt00102c.Search in Google Scholar PubMed

Liu, B.; Jabed, M. A.; Kilina, S.; Sun, W. Synthesis, photophysics, and reverse saturable absorption of trans-bis-cyclometalated iridium(III) complexes (CˆNˆC)Ir(R-tpy)(+) (tpy = 2, 2’:6’, 2”-Terpyridine) with broadband excited state absorption. Inorg. Chem. 2020c, 59, 8532–8542, https://doi.org/10.1021/acs.inorgchem.0c00961.Search in Google Scholar PubMed

Lu, T. T.; Wang, C. Z.; Lystrom, L.; Pei, C. K.; Kilina, S.; Sun, W. F. Effects of extending the π-conjugation of the acetylide ligand on the photophysics and reverse saturable absorption of Pt(II) bipyridine bisacetylide complexes. Phys. Chem. Chem. Phys. 2016, 18, 28674–28687, https://doi.org/10.1039/c6cp02628a.Search in Google Scholar PubMed

Lu, J.; Pan, Q.; Zhu, S.; Liu, R.; Zhu, H. Ligand-mediated photophysics adjustability in bis-tridentate Ir(III) complexes and their application in efficient optical limiting materials. Inorg. Chem. 2021, 60, 12835–12846, https://doi.org/10.1021/acs.inorgchem.1c01142.Search in Google Scholar PubMed

Ma, T.; Jin, C.; Aslanzadeh, S. A. Quantum chemical study on the sensing properties of Pt-decorated BC3 nanotube toward metronidazole drug. Int. J. Quant. Chem. 2020, 120, 26407–26416.10.1002/qua.26407Search in Google Scholar

Maksymov, I. S.; Greentree, A. D. Coupling light and sound: giant nonlinearities from oscillating bubbles and droplets. Nanophotonics 2019, 8, 367–390, https://doi.org/10.1515/nanoph-2018-0195.Search in Google Scholar

Manjunatha, K. B.; Dileep, R.; Umesh, G.; Bhat, B. R. Nonlinear optical and all-optical switching studies of novel ruthenium complex. Opt Laser. Technol. 2013, 52, 103–108, https://doi.org/10.1016/j.optlastec.2013.04.019.Search in Google Scholar

Manjunatha, K. B.; Dileep, R.; Umesh, G.; Satyanarayan, M. N.; Ramachandra Bhat, B. All optical nonlinear and switching characteristics of a novel ruthenium complex. Opt. Mater. 2014, 36, 1054–1059, https://doi.org/10.1016/j.optmat.2014.01.029.Search in Google Scholar

Niu, R.; Chang, Q.; Wu, X.; Han, Y.; Jia, J.; Chen, S.; Song, Y. D-π-A type conjugated pyrene derivatives: third-order nonlinear absorption and excited-state dynamics. Opt. Mater. 2018, 85, 319–328, https://doi.org/10.1016/j.optmat.2018.08.073.Search in Google Scholar

Po, C.; Tao, C.-H.; Li, K.-F.; Chan, C. K. M.; Fu, H. L.-K.; Zhu, N.; Cheah, K.-W.; Yam, V. W.-W. Design, synthesis, luminescence and non-linear optical properties of 1, 3, 5-triethynylbenzene-based alkynylplatinum(II) terpyridine complexes. J. Organomet. Chem. 2019, 881, 13–18, https://doi.org/10.1016/j.jorganchem.2018.11.035.Search in Google Scholar

Price, R. S.; Dubinina, G.; Wicks, G.; Drobizhev, M.; Rebane, A.; Schanze, K. S. Polymer monoliths containing two-photon absorbing phenylenevinylene platinum(II) acetylide chromophores for optical power limiting. ACS Appl. Mater. Interfaces 2015, 7, 10795–10805, https://doi.org/10.1021/acsami.5b01456.Search in Google Scholar PubMed

Pritchett, T. M.; Ferry, M. J.; Mott, A. G.; Shensky, W.; Haley, J. E.; Liu, R.; Sun, W. Long-lifetime reverse saturable absorption in a bipyridyl platinum(II) complex bearing naphthalimidylethynyl-substituted fluorenylacetylide ligands. Opt. Mater. 2015, 39, 195–198, https://doi.org/10.1016/j.optmat.2014.11.025.Search in Google Scholar

Razi, S. S.; Koo, Y. H.; Kim, W.; Yang, W.; Wang, Z.; Gobeze, H.; D’Souza, F.; Zhao, J.; Kim, D. Ping-Pong energy transfer in a boron dipyrromethane containing Pt(II)–Schiff base complex: synthesis, photophysical studies, and anti-Stokes shift increase in triplet–triplet annihilation upconversion. Inorg. Chem. 2018, 57, 4877–4890, https://doi.org/10.1021/acs.inorgchem.7b02989.Search in Google Scholar PubMed

Song, W.; He, C.; Dong, Y.; Zhang, W.; Gao, Y.; Wu, Y.; Chen, Z. The effects of central metals on the photophysical and nonlinear optical properties of reduced graphene oxide-metal(II) phthalocyanine hybrids. Phys. Chem. Chem. Phys. 2015, 17, 7149–7157, https://doi.org/10.1039/c4cp05963h.Search in Google Scholar PubMed

Su, H.; Zhu, S.; Qu, M.; Liu, R.; Song, G.; Zhu, H. 1, 3, 5-triazine-based Pt(II) metallogel material: synthesis, photophysical properties, and optical power-limiting performance. J. Phys. Chem. C 2019, 123, 15685–15692, https://doi.org/10.1021/acs.jpcc.9b02168.Search in Google Scholar

Sun, W. F.; Pei, C. K.; Lu, T. T.; Cui, P.; Li, Z. G.; McCleese, C.; Fang, Y.; Kilina, S.; Song, Y. L.; Burda, C. Reverse saturable absorbing cationic iridium(III) complexes bearing the 2-(2-quinolinyl)quinoxaline ligand: effects of different cyclometalating ligands on linear and nonlinear absorption. J. Mater. Chem. C 2016, 4, 5059–5072, https://doi.org/10.1039/c6tc00710d.Search in Google Scholar

Sun, J.; Yuan, B.; Hou, X.; Yan, C.; Sun, X.; Xie, Z.; Shao, X.; Zhou, S. Broadband optical limiting of a novel twisted tetrathiafulvalene incorporated donor–acceptor material and its Ormosil gel glasses. J. Mater. Chem. C 2018, 6, 8495–8501, https://doi.org/10.1039/c8tc02364f.Search in Google Scholar

Sun, J.; Liu, Z.; Yan, C.; Sun, X.; Xie, Z.; Zhang, G.; Shao, X.; Zhang, D.; Zhou, S. Efficient construction of near-infrared absorption donor-acceptor copolymers with and without Pt(II)-incorporation toward broadband nonlinear optical materials. ACS Appl. Mater. Interfaces 2020, 12, 2944–2951, https://doi.org/10.1021/acsami.9b17784.Search in Google Scholar PubMed

Sun, Y.; Liu, B.; Jiao, B.; Guo, Y.; Chen, X.; Zhou, G.; Chen, Z.; Yang, X. Highly efficient solution-processed pure yellow OLEDs based on dinuclear Pt(II) complexes. Mater. Chem. Front. 2021a, 5, 5698–5705, https://doi.org/10.1039/d1qm00507c.Search in Google Scholar

Sun, Y.; Liu, B.; Guo, Y.; Chen, X.; Lee, Y. T.; Feng, Z.; Adachi, C.; Zhou, G.; Chen, Z.; Yang, X. Developing efficient dinuclear Pt(II) complexes based on the triphenylamine core for high-efficiency solution-processed OLEDs. ACS Appl. Mater. Interfaces 2021b, 13, 36020–36032, https://doi.org/10.1021/acsami.1c06148.Search in Google Scholar PubMed

Tang, M.; Zhu, S.; Liu, R.; Wang, J.; Zhang, Z.; Zhu, H. Synthesis, characterization and optical properties of novel Ir(III) complexes bearing N-heterocycle substituents. J. Organomet. Chem. 2019, 880, 363–367, https://doi.org/10.1016/j.jorganchem.2018.11.031.Search in Google Scholar

Tian, Z.; Yang, X.; Liu, B.; Zhong, D.; Zhou, G.; Wong, W.-Y. New heterobimetallic Au(I)–Pt(II) polyynes achieving a good trade-off between transparency and optical power limiting performance. J. Mater. Chem. C 2018, 6, 11416–11426, https://doi.org/10.1039/c8tc03157f.Search in Google Scholar

Wang, A.; Long, L.; Zhao, W.; Song, Y.; Humphrey, M. G.; Cifuentes, M. P.; Wu, X.; Fu, Y.; Zhang, D.; Li, X.; Zhang, C. Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 2013, 53, 327–338, https://doi.org/10.1016/j.carbon.2012.11.019.Search in Google Scholar

Wang, C.; Lystrom, L.; Yin, H.; Hetu, M.; Kilina, S.; McFarland, S. A.; Sun, W. Increasing the triplet lifetime and extending the ground-state absorption of biscyclometalated Ir(III) complexes for reverse saturable absorption and photodynamic therapy applications. Dalton Trans. 2016, 45, 16366–16378, https://doi.org/10.1039/c6dt02416e.Search in Google Scholar PubMed

Wang, L.; Cui, P.; Kilina, S.; Sun, W. F. Toward broadband reverse saturable absorption: investigating the impact of cyclometalating ligand π-conjugation on the photophysics and reverse saturable absorption of cationic heteroleptic iridium complexes. J. Phys. Chem. C 2017, 121, 5719–5730, https://doi.org/10.1021/acs.jpcc.6b12947.Search in Google Scholar

Wang, L.; Monro, S.; Cui, P.; Yin, H.; Liu, B.; Cameron, C. G.; Xu, W.; Hetu, M.; Fuller, A.; Kilina, S.; McFarland, S. A.; Sun, W. Heteroleptic Ir(III) N6 complexes with long-lived triplet excited states and in vitro photobiological activities. ACS Appl. Mater. Interfaces 2019, 11, 3629–3644, https://doi.org/10.1021/acsami.8b14744.Search in Google Scholar PubMed PubMed Central

Wang, A.; Du, X.; Yin, Y.; Shen, X.; Cheng, L.; Zhu, W.; Shang, D. Nonlinear optical modification of single-walled carbon nanotube by decorating with metal and metal-free porphyrins. Diam. Relat. Mater. 2020, 106, 107838, https://doi.org/10.1016/j.diamond.2020.107838.Search in Google Scholar

Wen, Q.; Yang, L. W.; Zhao, S. H.; Fang, Y. W.; Wang, Y.; Hou, R. Impacts of orbital elements of space-based laser station on small scale space debris removal. Optik 2018, 154, 83–92, https://doi.org/10.1016/j.ijleo.2017.10.008.Search in Google Scholar

Wu, W.; Sun, J.; Ji, S.; Wu, W.; Zhao, J.; Guo, H. Tuning the emissive triplet excited states of platinum(II) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions. Dalton Trans. 2011, 40, 11550–11561, https://doi.org/10.1039/c1dt11001b.Search in Google Scholar PubMed

Xie, P.; Wang, L.; Huang, Z.; Guo, F.; Jin, Q. Nonlinear optical properties of conjugated platinum(II) acetylides with multibranched donor–acceptor structures. Eur. J. Inorg. Chem. 2014, 2014, 2544–2551, https://doi.org/10.1002/ejic.201402043.Search in Google Scholar

Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279, https://doi.org/10.1002/adma.200801617.Search in Google Scholar

Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652, https://doi.org/10.1016/j.ccr.2011.01.042.Search in Google Scholar

Yu, J.; Cui, Y.; Wu, C.; Yang, Y.; Wang, Z.; O’Keeffe, M.; Chen, B.; Qian, G. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework. Angew. Chem. Int. Ed. 2012, 51, 10542–10545, https://doi.org/10.1002/ange.201204160.Search in Google Scholar

Zhang, B.; Li, Y.; Liu, R.; Pritchett, T. M.; Haley, J. E.; Sun, W. Extending the bandwidth of reverse saturable absorption in platinum complexes using two-photon-initiated excited state absorption. ACS Appl. Mater. Interfaces 2013, 5, 565–572, https://doi.org/10.1021/am3018724.Search in Google Scholar PubMed

Zhao, J.; Ji, S.; Wu, W.; Wu, W.; Guo, H.; Sun, J.; Sun, H.; Liu, Y.; Li, Q.; Huang, L. Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications. RSC Adv. 2012, 2, 1712–1728, https://doi.org/10.1039/c1ra00665g.Search in Google Scholar

Zhao, S.; Yang, X.; Yang, Y.; Kuang, X.; Lu, F.; Shan, P.; Sun, Z.; Lin, Z.; Hong, M.; Luo, J. Non-Centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J. Am. Chem. Soc. 2018, 140, 1592–1595, https://doi.org/10.1021/jacs.7b12518.Search in Google Scholar PubMed

Zhou, G.; Wong, W.-Y.; Poon, S.-Y.; Ye, C.; Lin, Z. Symmetric versus unsymmetric platinum(II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade-off optimization. Adv. Funct. Mater. 2009, 19, 531–544, https://doi.org/10.1002/adfm.200800856.Search in Google Scholar

Zhu, J.; Li, Y.; Chen, Y.; Wang, J.; Zhang, B.; Zhang, J.; Blau, W. J. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 2011, 49, 1900–1905, https://doi.org/10.1016/j.carbon.2011.01.014.Search in Google Scholar

Zhu, X.; Lystrom, L.; Kilina, S.; Sun, W. Tuning the photophysics and reverse saturable absorption of heteroleptic cationic iridium(III) complexes via substituents on the 6, 6’-Bis(fluoren-2-yl)-2, 2’-biquinoline ligand. Inorg. Chem. 2016, 55, 11908–11919, https://doi.org/10.1021/acs.inorgchem.6b02028.Search in Google Scholar PubMed

Zhu, X.; Cui, P.; Kilina, S.; Sun, W. Multifunctional cationic iridium(III) complexes bearing 2-Aryloxazolo[4, 5-f] [1, 10]phenanthroline (NˆN) ligand: synthesis, crystal structure, photophysics, mechanochromic/vapochromic effects, and reverse saturable absorption. Inorg. Chem. 2017, 56, 13715–13731, https://doi.org/10.1021/acs.inorgchem.7b01472.Search in Google Scholar PubMed

Zhu, S.; Liu, H.; Wang, K.; Cheng, Q.; Ma, Z.; Liu, R.; Song, G.; Zhu, H. The effects of extended pi-conjugation in bipyridyl ligands on the tunable photophysics, triplet excited state and optical limiting properties of Pt(II) naphthalimidyl acetylide complexes. Dalton Trans. 2019, 48, 15105–15113, https://doi.org/10.1039/c9dt02595b.Search in Google Scholar PubMed

Zhu, S.; Zhai, S.; Chen, Z.; Su, H.; Zhang, C.; Liu, R.; Zhu, H. Cyclometalated Pt(II) complexes with tetradentate Schiff base ligands: synthesis, photophysics, electrochemical studies and optical power limiting performance. Dyes Pigments 2020a, 182, 108591, https://doi.org/10.1016/j.dyepig.2020.108591.Search in Google Scholar

Zhu, S.; Hu, L.; Gu, L.; Liu, R.; Zhu, H. Heteroleptic Ir(iii) complexes with varied π-conjugated diimine ligands: synthesis, tunable triplet states and nonlinear absorption properties. Dalton Trans. 2020b, 49, 7945–7951, https://doi.org/10.1039/d0dt01207f.Search in Google Scholar PubMed

Zhu, S.; Zhang, Q.; Pan, Q.; Hu, J.; Liu, R.; Song, G.; Zhu, H. High performance Pt(II) complex and its hybridized carbon quantum dots: synthesis and the synergistic enhanced optical limiting property. Appl. Surf. Sci. 2022, 584, 152567.10.1016/j.apsusc.2022.152567Search in Google Scholar

Received: 2022-04-16
Accepted: 2022-07-25
Published Online: 2022-08-22
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2022-0013/html
Scroll to top button