Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 29, 2015

Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets

  • Adebayo A. Adeniyi

    Adebayo A. Adeniyi is a citizen of Nigeria and had his scientific background in Physical Chemistry. He got his PhD in 2014 at the University of Fort Hare, South Africa and is currently a postdoctoral fellow at University of Kwazulu-Natal, Durban, South Africa. His major research focus is on drug discovery using both computational and experimental approaches.

    and Peter A. Ajibade

    Peter A. Ajibade hold a BSc (Honours) in pure and applied chemistry and MSc in inorganic chemistry, both from the University of Ibadan, Nigeria and obtained a PhD in inorganic chemistry from the University of Zululand, South Africa. He started his academic career at the University of Ado-Ekiti, Nigeria and joined University of Fort Hare in 2007 and rose to the position of professor of inorganic materials chemistry in 2014. He has published over 100 peer-reviewed journal articles and is leading a thriving research group in inorganic materials and nanotechnology in the university with 3 postdoctoral research fellow, 13 PhD students and other masters and honours postgraduate students.

    EMAIL logo

Abstract

In the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.


Corresponding author: Peter A. Ajibade, Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa, Phone: +27-406-022-055, Fax: +27-865-181-225, e-mail:

About the authors

Adebayo A. Adeniyi

Adebayo A. Adeniyi is a citizen of Nigeria and had his scientific background in Physical Chemistry. He got his PhD in 2014 at the University of Fort Hare, South Africa and is currently a postdoctoral fellow at University of Kwazulu-Natal, Durban, South Africa. His major research focus is on drug discovery using both computational and experimental approaches.

Peter A. Ajibade

Peter A. Ajibade hold a BSc (Honours) in pure and applied chemistry and MSc in inorganic chemistry, both from the University of Ibadan, Nigeria and obtained a PhD in inorganic chemistry from the University of Zululand, South Africa. He started his academic career at the University of Ado-Ekiti, Nigeria and joined University of Fort Hare in 2007 and rose to the position of professor of inorganic materials chemistry in 2014. He has published over 100 peer-reviewed journal articles and is leading a thriving research group in inorganic materials and nanotechnology in the university with 3 postdoctoral research fellow, 13 PhD students and other masters and honours postgraduate students.

References

Adams, J. R.; Bennett, M. A. Transition metal complexes of tethered arenes. Adv. Organomet. Chem. 2006, 54, 293–331.10.1016/S0065-3055(05)54007-3Search in Google Scholar

Adeniyi, A. A.; Ajibade, P. A. Inhibitory activities and possible anticancer targets of Ru(II)-based complexes using computational docking method. J. Mol. Graphics Model2012, 38, 60–69.10.1016/j.jmgm.2012.08.004Search in Google Scholar PubMed

Adeniyi, A. A.; Ajibade, P. A. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules2013a, 18, 1–20.10.3390/molecules18043760Search in Google Scholar PubMed PubMed Central

Adeniyi, A. A.; Ajibade, P. A. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes. Spectr. Acta Pt. A2013b, 115, 426–436.10.1016/j.saa.2013.06.057Search in Google Scholar PubMed

Adeniyi, A. A.; Ajibade, P. A. Effects of bidentate coordination on the molecular properties of RAPTA-C based complexes using theoretical approach. J. Mol. Model2013c, 19, 1325–1338.10.1007/s00894-012-1683-xSearch in Google Scholar PubMed

Adeniyi, A. A.; Ajibade, P. A. Insights into the intramolecular properties of η6-arene-Ru-based anticancer complexes using quantum calculations. J. Chem. 2013d, 892052, 1–14.Search in Google Scholar

Adeniyi, A. A.; Ajibade, P. A. Theoretical study of the electronic and spectroscopic properties of some Ru(II) anticancer complexes. Spectr. Acta Pt. A2013e, 105, 456–465.10.1016/j.saa.2012.12.016Search in Google Scholar PubMed

Adeniyi, A. A.; Ajibade, P. A. An insight into the anticancer activities of Ru(II) based metallocompounds using docking methods. Molecules2014a, 18, 10829–10856.10.3390/molecules180910829Search in Google Scholar PubMed PubMed Central

Adeniyi, A. A.; Ajibade, P. A. Computational properties of hydrated and unhydrated: η6-toluene and η6-triflorotoluene half-sandwich Ru(II) anticancer complexes. J. Biomol. Struct. Dyn. 2014b, 32, 1351–1365.10.1080/07391102.2013.819299Search in Google Scholar PubMed

Adeniyi, A. A.; Ajibade, P. A. Theoretical study of the interatomic properties of ruthenium half sandwich anticancer compounds containing Ru-N bonds. Asian J. Chem. 2015, 27, 907–918.10.14233/ajchem.2015.17412Search in Google Scholar

Akbayeva, D. N.; Gonsalvi, L.; Oberhauser, W.; Peruzzini, M.; Vizza, F.; Brüggeller, P.; Romerosa, A.; Sava, G.; Bergamo, A. Synthesis, catalytic properties and biological activity of new water soluble ruthenium cyclopentadienyl PTA complexes [(C5R5)RuCl(PTA)2] (R=H, Me; PTA=1,3,5-triaza-7-phosphaadamantane). Chem. Commun. (Camb.)2003, 264–265.10.1039/b210102eSearch in Google Scholar PubMed

Al-Lawati, H. A. J.; Suliman, F. E. O.; Al Kindy, S. M. Z.; Al-Lawati, A. M.; Varma, G. B.; Nour, I. E. M. Enhancement of on chip chemiluminescence signal intensity of tris(1,10-phenanthroline)-ruthenium(II) peroxydisulphate system for analysis of chlorpheniramine maleate in pharmaceutical formulations. Talanta2010, 82, 1999–2002.10.1016/j.talanta.2010.08.018Search in Google Scholar PubMed

Alessio, E.; Mestroni, G.; Bergamo, A.; Sava, G. Ruthenium antimetastatic agents. Curr. Top. Med. Chem. 2004, 4, 1525–1535.10.2174/1568026043387421Search in Google Scholar PubMed

Allardyce, C. S.; Dyson, P. J. Ruthenium in medicine: current clinical uses and future prospects. Platinum Metal2001, 45, 62–69.Search in Google Scholar

Allardyce, C. S.; Dyson, P. J.; Ellis, D. J.; Heath, S. L. [Ru(η6-p-cymene)Cl2(PTA)] (PTA=1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem. Commun. 2001, 1396–1397.10.1039/b104021aSearch in Google Scholar

Allardyce, C. S.; Dorcier, A.; Scolaro, C.; Dyson, P. J. Development of organometallic (organo-transition metal) pharmaceuticals. Appl. Organomet. Chem. 2005, 19, 1–10.10.1002/aoc.725Search in Google Scholar

Ang, W. H.; Dyson, P. J. Classical and nonclassical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur. J. Inorg. Chem. 2006, 20, 4003–4018.10.1002/ejic.200600723Search in Google Scholar

Ang, W. H.; Daldini, E.; Scolaro, C.; Scopelliti, R.; Juillerat-Jeannerat, L.; Dyson, P. J. Development of organometallic ruthenium-arene anticancer drugs that resist hydrolysis. Inorg. Chem. 2006, 45, 9006–9013.10.1021/ic061008ySearch in Google Scholar PubMed

Ang, W. H.; De Luca, A.; Chapuis-Bernasconi, C.; Juillerat-Jeanneret, L.; Lo Bello, M.; Dyson, P. J. Organometallic ruthenium inhibitors of glutathione-S-transferase P1-1 as anticancer drugs. Chem. Med. Chem. 2007a, 2, 1799–1806.10.1002/cmdc.200700209Search in Google Scholar PubMed

Ang, W. H.; Daldini, E.; Juillerat-Jeanneret, L.; Dyson, P. J. Strategy to tether organometallic ruthenium-arene anticancer compounds to recombinant human serum albumin. Inorg. Chem. 2007b, 46, 9048–9050.10.1021/ic701474mSearch in Google Scholar PubMed

Atilla-Gokcumen, G. E.; Di Costanzo, L.; Meggers, E. Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase 3β. J. Biol. Inorg. Chem. 2011, 16, 45–50.10.1007/s00775-010-0699-xSearch in Google Scholar PubMed

Bacac, M.; Hotze, A. C.; van der Schilden, K.; Haasnoot, J. G.; Pacor, S.; Alessio, E.; Sava, G.; Reedijk, J. The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. J. Inorg. Biochem. 2004, 98, 402–412.10.1016/j.jinorgbio.2003.12.003Search in Google Scholar PubMed

Barragán, F.; López-Senín, P.; Salassa, L.; Betanzos-Lara, S.; Habtemariam, A.; Moreno, V.; Sadler, P. J.; Marchán, V. Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J. Am. Chem. Soc. 2011, 133, 14098–14108.10.1021/ja205235mSearch in Google Scholar

Barry, N. P.; Sadler, P. J. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies. Chem. Soc. Rev. 2012, 41, 264–279.10.1039/c2cs15300aSearch in Google Scholar

Barry, N. P.; Zava, O.; Furrer, J.; Dyson, P. J.; Therrien, B. Anticancer activity of opened arene ruthenium metalla-assemblies. Dalton Trans. 2010, 39, 5272–5277.10.1039/c001521kSearch in Google Scholar

Barry, N. P.; Zava, O.; Dyson, P. J.; Therrien, B. Excellent correlation between drug release and portal size in metalla-cage drug-delivery systems. Chemistry2011, 17, 9669–9677.10.1002/chem.201003530Search in Google Scholar

Beckford, F. A.; Leblanc, G.; Thessing, J.; Shaloski, M.; Frost, B. J.; Li, L.; Seeram, N. P. Organometallic ruthenium complexes with thiosemicarbazone ligands: synthesis, structure and cytotoxicity of [(η-p-cymene)Ru(NS)Cl] (NS=9-anthraldehyde thiosemicarbazones). Inorg. Chem. Commun. 2009, 12, 1094–1098.10.1016/j.inoche.2009.08.034Search in Google Scholar

Beckford, F.; Dourth, D.; Shaloski, M., Jr.; Didion, J.; Thessing, J.; Woods, J.; Crowell, V.; Gerasimchuk, N.; Gonzalez-Sarrías, A.; Seeram, N. P. Half-sandwich ruthenium-arene complexes with thiosemicarbazones: synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes. J. Inorg. Biochem. 2011, 105, 1019–1029.10.1016/j.jinorgbio.2011.04.008Search in Google Scholar

Bennett, M. A. Metal π-complexes formed by seven-membered and eight-membered carbocydic compounds. Adv. Organomet. Chem. 1966, 4, 353–387.10.1016/S0065-3055(08)60284-1Search in Google Scholar

Bennett, M. A. 7-Complexes of ruthenium and osmium containing η26 hydrocarbon ligands: (i) complexes not containing cyclobutadiene, cyclopentadienyl or η-arene coligands. Compr. Organomet. Chem. II1995a, 7, 441–472.10.1016/B978-008046519-7.00062-9Search in Google Scholar

Bennett, M. A. 9-Complexes of ruthenium and osmium containing η26 hydrocarbon ligands: (iii) complexes containing six-, seven- and eight-membered rings. Compr. Organomet. Chem. II1995b, 7, 549–602.10.1016/B978-008046519-7.00064-2Search in Google Scholar

Bennett, M. A. Recent advances in the chemistry of arene complexes of ruthenium(0) and ruthenium(II). Coord. Chem. Rev. 1997, 166, 225–254.10.1016/S0010-8545(97)00024-6Search in Google Scholar

Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Smith, A. K.; Tucker, P. A. Highly fluxional arene cyclooctatetraene complexes of zerovalent iron, ruthenium, and osmium. Single-crystal X-ray study of (cyclooctatetraene)(hexamethylbenzene)ruthenium(0), Ru(η6HMB)(1-4-η-COT). Inorg. Chem. 1980, 19, 1014–1021.10.1021/ic50206a045Search in Google Scholar

Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Smith, A. K.; Tucker, P. A. Protonation of arene cyclooctatetraene complexes of zerovalent ruthenium. Single-crystal X-ray study of the isomeric cyclooctatrienyl complexes [Ru(1-5-η-C8H9)(1,3,5-C6H3Me3)]PF6 and [Ru(1-3:6-7-η-C8H9)(1,3,5-C6H3Me3)]PF6. Inorg. Chem. 1981, 20, 2353–2365.10.1021/ic50222a001Search in Google Scholar

Bennett, M. A.; McMahon, I. J.; Pelling, S.; Robertson, G. B.; Wickramasinghe, W. A. Protonation of dicyclopentadiene complexes of ruthenium(0), osmium(0), rhodium(I), and iridium(I). Single-crystal X-ray study of [Os(2,3,5-η-C10H13)(η-C6H3Me3-1,3,5)]PF6, a complex containing a osmium-hydrogen-carbon interaction. Organometallics1985, 4, 754–761.10.1021/om00123a024Search in Google Scholar

Bennett, M. A.; Neumann, H.; Thomas, M.; Wang, X. Q.; Pertici, P.; Salvadori, P.; Vitulli, G. (η6-Naphthalene)(η4-1,5-cyclooctadiene)ruthenium(0): efficient synthesis, chemistry and catalytic properties. Organometallics1991a, 10, 3237–3245.10.1021/om00055a047Search in Google Scholar

Bennett, M. A.; Pelling, S.; Robertson, G. B.; Wickramasinghe, W. A. Synthesis and fluxional behavior of protonated 1,3-diene complexes of ruthenium(0), osmium(0), rhodium(I), and iridium(I) containing 2,3-dimethylene-5,6,7,8-dibenzobicyclo[2.2.2]octane (ddbo, C18H14). Single-crystal X-ray study of the agostic complex [Ru(C18H15)(η-C6H3Me3)]PF6. Organometallics1991b, 10, 2166–2172.10.1021/om00053a019Search in Google Scholar

Bennett, M. A.; Goh, L. Y.; McMahon, I. J.; Mitchell, T. R. B.; Robertson, G. B.; Turney, T. W.; Wasantha, W. A. Double deprotonation of ruthenium(II) cations containing 1,2-dimethyl-substituted η6-arenes. Protonation of the resulting exo-coordinated (o-xylylene)ruthenium(0) complexes and X-ray crystal structures of the agostic (η3-pentamethylbenzyl)ruthenium(II) complexes [Ru{η3-(HCH2)(CH2)C6Me4}{(Z)-Ph2PCH:CHPPh2}(PMe2Ph)]PF6 and [Ru{η3-(HCH2)(CH2)C6Me4}(PMe2Ph)3]PF6. Organometallics1992, 11, 3069–3085.10.1021/om00045a022Search in Google Scholar

Bennett, M. A.; Khan, K.; Wenger, E. 8-Complexes of ruthenium and osmium containing η26 hydrocarbon ligands: (ii) complexes containing four- and five-membered rings (including MCp (arene) (complexes). Compr. Organomet. Chem. II1995, 7, 473–548.10.1016/B978-008046519-7.00063-0Search in Google Scholar

Bennett, M. A.; Goh, L. Y.; Willis, A. C. Base-induced fragmentation of a macrocyclic thioether at an (arene)ruthenium(II) center. Generation of η1(S)-ethenethiolate and η2(C,S)-thioacetaldehyde. J. Am. Chem. Soc. 1996a, 118, 4984–4992.10.1021/ja9541084Search in Google Scholar

Bennett, M. A.; Willis, A. C.; Goh, L. Y.; Chen, W. Divalent ruthenium complexes containing 1,4,7-trithiacyclononane and cycloocta-1,5-diene (C8H12) or 1-3:5,6η-cyclooctadienyl (C8H11). Polyhedron1996b, 15, 3559–3567.10.1016/0277-5387(96)00073-3Search in Google Scholar

Bennett, M. A.; Neumann, H.; Willis, A. C.; Ballantini, V.; Pertici, P.; Mann, B. E. Synthesis, structure, and fluxional behavior of bis(cyclooctatetraene)ruthenium(0) and its derivatives. Organometallics1997, 16, 2868–2878.10.1021/om970065jSearch in Google Scholar

Bennett, M. A.; Bown, M.; Byrnes, M. J. Thermally induced endo to exo isomerization in the o-xylylene complexes of zerovalent ruthenium and osmium, M(η6-C6Me6){η4-o-(CH2)2C6Me4} (M=Ru, Os). J. Organomet. Chem. 1998a, 571, 139–144.10.1016/S0022-328X(98)00900-0Search in Google Scholar

Bennett, M. A.; Lu, Z.; Wang, X.; Bown, M.; Hockless, D. C. R. Ligand-induced ring slippage of η6- to η4-naphthalene. Preparation and structural characterization of Ru(η4-C10H8)(η4-1,5-C8H12)(L) [L=PMe3, PEt3, P(OMe)3] and of derived binuclear complexes containing bridging naphthalene, Ru2(μ-η64-C10H8)(η4-1,5-C8H12)2(L) [L=PEt3, P(OMe)3]. J. Am. Chem. Soc. 1998b, 120, 10409–10415.10.1021/ja981027+Search in Google Scholar

Bennett, M. A.; Clark, A. M.; Contel, M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. Cyclometallated complexes of ruthenium and osmium containing the o-C6H4PPh2 ligand. J. Organomet. Chem. 2000, 601, 299–304.10.1016/S0022-328X(00)00086-3Search in Google Scholar

Bennett, M. A.; Edwards, A. J.; Harper, J. R.; Khimyak, T.; Willis, A. C. Synthesis, structure and redox behaviour of tethered arene-ruthenium(II) complexes. J. Organomet. Chem. 2001, 629, 7–18.10.1016/S0022-328X(01)00801-4Search in Google Scholar

Bennett, M. A.; Byrnes, M. J.; Chung, G.; Edwards, A. J.; Willis, A. C. Bis(acetylacetonato)ruthenium(II) complexes containing bulky tertiary phosphines. Formation and redox behaviour of Ru(acac)2 (PR3) (R=iPr, Cy) complexes with ethene, carbon monoxide, and bridging dinitrogen. Inorg. Chim. Acta2005, 358, 1692–1708.10.1016/j.ica.2004.07.062Search in Google Scholar

Bergamo, A.; Sava, G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 2011, 40, 7817–7823.10.1039/c0dt01816cSearch in Google Scholar PubMed

Bergamo, A.; Gava, B.; Alessio, E.; Mestroni, G.; Serli, B.; Cocchietto, M.; Zorzet, S.; Sava, G. Ruthenium-based NAMI-A type complexes with in vivo selective metastasis reduction and in vitro invasion inhibition unrelated to cell cytotoxicity. Int. J. Oncol. 2002, 21, 1331–1338.10.3892/ijo.21.6.1331Search in Google Scholar

Bergamo, A.; Masi, A.; Dyson, P. J.; Sava, G. Modulation of the metastatic progression of breast cancer with an organometallic ruthenium compound. Int. J. Oncol. 2008, 33, 1281–1289.10.3892/ijo_00000119Search in Google Scholar

Bergamo, A.; Gaiddon, C.; Schellens, J. H.; Beijnen, J. H.; Sava, G. Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J. Inorg. Biochem. 2012, 106, 90–99.10.1016/j.jinorgbio.2011.09.030Search in Google Scholar PubMed

Berger, I.; Hanif, M.; Nazarov, A. A.; Hartinger, C. G.; John, R. O.; Kuznetsov, M. L.; Groessl, M.; Schmitt, F.; Zava, O.; Biba, F.; Arion, V. B.; Galanski, M.; Jakupec, M. A.; Juillerat-Jeanneret, L.; Dyson, P. J.; Keppler, B. K. In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chem. Eur. J. 2008, 14, 9046–9057.10.1002/chem.200801032Search in Google Scholar PubMed

Betanzos-Lara, S.; Salassa, L.; Habtemariam, A.; Novakova, O.; Pizarro, A. M.; Clarkson, G. J.; Liskova, B.; Brabec, V.; Sadler, P. J. Photoactivatable organometallic pyridyl ruthenium(II) arene complexes. Organometallics2012, 31, 3466–3479.10.1021/om201177ySearch in Google Scholar

Bhat, S. S.; Kumbhar, A. S.; Kumbhar, A. A.; Khan, A. Efficient DNA condensation induced by ruthenium(II) complexes of a bipyridine-functionalized molecular clip ligand. Chemistry2012, 18, 16383–16392.10.1002/chem.201200407Search in Google Scholar PubMed

Biersack, B.; Zoldakova, M.; Effenberger, K.; Schobert, R. (arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrphostins with enhanced selectivity and cytotoxicity in cancer cells. Eur. J. Med. Chem. 2010, 45, 1972–1975.10.1016/j.ejmech.2010.01.040Search in Google Scholar PubMed

Bíró, L.; Farkas, E.; Buglyó, P. Complex formation between [Ru(η)6(-p-cym)(H2O)3]2+ and (O,O) donor ligands with biological relevance in aqueous solution. Dalton Trans. 2010, 39, 10272–10278.10.1039/c0dt00469cSearch in Google Scholar PubMed

Bíró, L.; Farkas, E.; Buglyó, P. Hydrolytic behaviour and chloride ion binding capability of [Ru(η6-p-cym)(H2O)3]2+: a solution equilibrium study. Dalton Trans. 2012, 41, 285–291.10.1039/C1DT11405KSearch in Google Scholar PubMed

Blagosklonny, M. V. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle2004, 3, 1035–1042.10.4161/cc.3.8.1023Search in Google Scholar

Blagosklonny, M. V. How cancer could be cured by 2015. Cell Cycle2005, 4, 269–278.10.4161/cc.4.2.1493Search in Google Scholar

Blasberg, F.; Bats, J. W.; Bolte, M.; Lerner, H.-W.; Wagner, M. Para-quinone-containing bis(pyrazol-1-yl)methane ligands: coordination behavior toward CoII and a C-H activation reaction with CeIV. Inorg. Chem. 2010, 49, 7435–7445.10.1021/ic100754kSearch in Google Scholar PubMed

Bolink, H. J.; Cappelli, L.; Coronado, E.; Gaviña, P. Observation of electroluminescence at room temperature from a ruthenium(II) bis-terpyridine complex and its use for preparing light-emitting electrochemical cells. Inorg. Chem. 2005, 44, 5966–5968.10.1021/ic0507058Search in Google Scholar PubMed

Boutadla, Y.; Davies, D. L.; Jones, R. C.; Singh, K. The scope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium, rhodium and ruthenium. Chemistry2011, 17, 3438–3448.10.1002/chem.201002604Search in Google Scholar PubMed

Bratsos, I.; Birarda, G.; Jedner, S.; Zangrando, E.; Alessio, E. Half-sandwich RuII-[9]aneS3 complexes with dicarboxylate ligands: synthesis, characterization and chemical behavior. Dalton Trans. 2007, 4048–4058.10.1039/b707011jSearch in Google Scholar PubMed

Bratsos, I.; Jedner, S.; Bergamo, A.; Sava, G.; Gianferrara, T.; Zangrando, E.; Alessio, E. Half-sandwich Ru II[9]aneS3 complexes structurally similar to antitumor-active organometallic piano-stool compounds: preparation, structural characterization and in vitro cytotoxic activity. J. Inorg. Biochem. 2008, 102, 1120–1133.10.1016/j.jinorgbio.2008.01.005Search in Google Scholar PubMed

Bratsos, I.; Urankar, D.; Zangrando, E.; Genova-Kalou, P.; Košmrlj, J.; Alessio, E.; Turel, I. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans. 2011, 40, 5188–5199.10.1039/c0dt01807dSearch in Google Scholar PubMed

Bratsos, I.; Mitri, E.; Ravalico, F.; Zangrando, E.; Gianferrara, T.; Bergamo, A.; Alessio, E. New half sandwich Ru(II) coordination compounds for anticancer activity. Dalton Trans. 2012, 41, 7358–7371.10.1039/c2dt30654aSearch in Google Scholar PubMed

Bregman, H.; Meggers, E. Ruthenium half-sandwich complexes as protein kinase inhibitors: an N-succinimidyl ester for rapid derivatizations of the cyclopentadienyl moiety. Org. Lett. 2006, 8, 5465–5468.10.1021/ol0620646Search in Google Scholar PubMed

Brindell, M.; Kuliś, E.; Elmroth, S. K.; Urbańska, K.; Stochel, G. Light-induced anticancer activity of [RuCl2(DMSO)4] complexes. J. Med. Chem. 2005, 48, 7298–7304.10.1021/jm0502992Search in Google Scholar PubMed

Bruijnincx, P. C. A.; Sadler, P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Bio. 2008, 12, 197–206.10.1016/j.cbpa.2007.11.013Search in Google Scholar PubMed PubMed Central

Bugarcic, T.; Habtemariam, A.; Stepankova, J.; Heringova, P.; Kasparkova, J.; Deeth, R. J.; Johnstone, R. D.; Prescimone, A.; Parkin, A.; Parsons, S.; Brabec, V.; Sadler, P. J. The contrasting chemistry and cancer cell cytotoxicity of bipyridine and bipyridinediol ruthenium(II) arene complexes. Inorg. Chem. 2008, 47, 11470–11486.10.1021/ic801361mSearch in Google Scholar PubMed

Bugarcic, T.; Habtemariam, A.; Deeth, R. J.; Fabbiani, F. P. A.; Parsons, S.; Sadler, P. J. Ruthenium(II) arene anticancer complexes with redox-active diamine ligands. Inorg. Chem. 2009, 48, 9444–9453.10.1021/ic9013366Search in Google Scholar PubMed

Buglyó, P.; Farkas, E. Novel half-sandwich Ru(II)-hydroxamate complexes: synthesis, characterization and equilibrium study in aqueous solution. Dalton Trans. 2009, 8063–8070.10.1039/b908173aSearch in Google Scholar PubMed

Burns, I. D.; Hill, A. F.; White, A. J. P.; Williams, D. J.; Wilton-Ely, J. D. E. T. Polyazolyl chelate chemistry. 6.1 Bidentate coordination of HB(pz)3 (pz=pyrazol-1-yl) to ruthenium and osmium: crystal structure of [RuH(CO)(PPh3)22-HB(pz)3}]. Organometallics1998, 17, 1552–1557.10.1021/om970991ySearch in Google Scholar

Byabartta, P.; Jasimuddin, S. K.; Mostafa, G.; Lu, T.-H.; Sinha, C. The synthesis, spectral studies and electrochemistry of 1,10-(phenanthroline)-bis-{1-alkyl-2-(arylazo)imidazole}ruthenium(II) perchlorate. Single crystal X-ray structure of [Ru(phen)(HaaiMe)2](ClO4)2 [phen=1,10-phenanthroline, HaaiMe=1-methyl-2-(phenylazo)imidazole]. Polyhedron2003, 22, 849–859.10.1016/S0277-5387(03)00004-4Search in Google Scholar

Cabrera, E.; Cerecetto, H.; González, M.; Gambino, D.; Noblia, P.; Otero, L.; Parajón-Costa, B.; Anzellotti, A.; Sánchez-Delgado, R.; Azqueta, A.; López de Ceráin, A.; Monge, A. Ruthenium(II) nitrofurylsemicarbazone complexes: new DNA binding agents. Eur. J. Med. Chem. 2004, 39, 377–382.10.1016/j.ejmech.2004.01.002Search in Google Scholar PubMed

Camm, K. D.; El-Sokkary, A.; Gott, A. L.; Stockley, P. G.; Belyaeva, T.; McGowan, P. C. Synthesis, molecular structure and evaluation of new organometallic ruthenium anticancer agents. Dalton Trans. 2009, 10914–10925.10.1039/b918902eSearch in Google Scholar PubMed

Canivet, J.; Karmazin-Brelot, L.; Süss-Fink, G. Cationic arene ruthenium complexes containing chelating 1,10-phenanthroline ligands. J. Organomet. Chem. 2005, 690, 3202–3211.10.1016/j.jorganchem.2005.02.050Search in Google Scholar

Caruso, F.; Rossi, M.; Benson, A.; Opazo, C.; Freedman, D.; Monti, E.; Gariboldi, M. B.; Shaulky, J.; Marchetti, F.; Pettinari, R.; Pettinari, C. Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J. Med. Chem. 2012, 55, 1072–1081.10.1021/jm200912jSearch in Google Scholar PubMed

Casini, A.; Mastrobuoni, G.; Ang, W. H.; Gabbiani, C.; Pieraccini, G.; Moneti, G.; Dyson, P. J.; Messori, L. ESI-MS characterisation of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) complexes. Chem. Med. Chem. 2007, 2, 631–635.10.1002/cmdc.200600258Search in Google Scholar PubMed

Casini, A.; Gabbiani, C.; Sorrentino, F.; Rigobello, M. P.; Bindoli, A.; Geldbach, T. J.; Marrone, A.; Re, N.; Hartinger, C. G.; Dyson, P. J.; Messori, L. Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J. Med. Chem. 2008, 51, 6773–6781.10.1021/jm8006678Search in Google Scholar PubMed

Casini, A.; Gabbiani, C.; Michelucci, E.; Pieraccini, G.; Moneti, G.; Dyson, P. J.; Messori, L. Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem. 2009a, 14, 761–770.10.1007/s00775-009-0489-5Search in Google Scholar PubMed

Casini, A.; Karotki, A.; Gabbiani, C.; Rugi, F.; Vašák, M.; Messori, L.; Dyson, P. J. Reactivity of an antimetastatic organometallic ruthenium compound with metallothionein-2: relevance to the mechanism of action. Metallomics2009b, 1, 434–441.10.1039/b909185hSearch in Google Scholar PubMed

Castellano-Castillo, M.; Kostrhunova, H.; Marini, V.; Kasparkova, J.; Sadler, P. J.; Malinge, J. M.; Brabec, V. Binding of mismatch repair protein MutS to mispaired DNA adducts of intercalating ruthenium(II) arene complexes. J. Biol. Inorg. Chem. 2008, 13, 993–999.10.1007/s00775-008-0386-3Search in Google Scholar

Chatterjee, S.; Kundu, S.; Bhattacharyya, A.; Hartinger, C. G.; Dyson, P. J. The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J. Biol. Inorg. Chem. 2008, 13, 1149–1155.10.1007/s00775-008-0400-9Search in Google Scholar

Chavain, N.; Biot, C. Organometallic complexes: new tools for chemotherapy. Curr. Med. Chem. 2010, 17, 2729–2745.10.2174/092986710791859306Search in Google Scholar

Chelopo, M. P.; Pawar, S. A.; Sokhela, M. K.; Govender, T.; Kruger, H. G.; Maguire, G. E. M. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands. Eur. J. Med. Chem. 2013, 407–414.10.1016/j.ejmech.2013.05.048Search in Google Scholar

Chen, X.-M.; Wu, G.-H.; Chen, J.-M.; Jiang, Y.-Q.; Chen, G.-N.; Oyama, M.; Chen, X.; Wang, X.-R. A novel electrochemiluminescence sensor based on bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide. Biosens. Bioelectron. 2010, 26, 872–876.10.1016/j.bios.2010.07.083Search in Google Scholar

Chval, Z.; Futera, Z.; Burda, J. V. Comparison of hydration reactions for “piano-stool” RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study. J. Chem. Phys. 2011, 134, 024520.10.1063/1.3515534Search in Google Scholar

Ciancetta, A.; Genheden, S.; Ryde, U. A QM/MM study of the binding of RAPTA ligands to cathepsin B. J. Comput. Aided Mol. Des. 2011, 25, 729–742.10.1007/s10822-011-9448-7Search in Google Scholar

Cini, R.; Tamasi, G.; Defazio, S.; Corsini, M.; Zanello, P.; Messori, L.; Marcon, G.; Piccioli, F.; Orioli, P. Study of ruthenium(II) complexes with anticancer drugs as ligands. Design of metal-based phototherapeutic agents. Inorg. Chem. 2003, 42, 8038–8052.10.1021/ic0349095Search in Google Scholar

Concepcion, J.; Loeb, B.; Simon-Manso, Y.; Zuloaga, F. Influence of L-type ligands on the relative stability and interconversion of cis-trans-[Ru(phen)2L2]n+ type complexes. A theoretical study. Polyhedron2000, 19, 2297–2302.10.1016/S0277-5387(00)00492-7Search in Google Scholar

Corral, E.; Hotze, A. C.; den Dulk, H.; Leczkowska, A.; Rodger, A.; Hannon, M. J.; Reedijk, J. Ruthenium polypyridyl complexes and their modes of interaction with DNA: is there a correlation between these interactions and the antitumor activity of the compounds? J. Biol. Inorg. Chem. 2009, 14, 439–348.10.1007/s00775-008-0460-xSearch in Google Scholar PubMed PubMed Central

Cutillas, N.; Yellol, G. S.; de Haro, C.; Vicente, C.; Rodríguez, V.; Ruiz, J. Anticancer cyclometalated complexes of platinum group metals and gold. Coord. Chem. Rev. 2013, 257, 2784–2797.10.1016/j.ccr.2013.03.024Search in Google Scholar

Das, S.; Sinha, S.; Britto, R.; Somasundaram, K.; Samuelson, A. G. Cytotoxicity of half sandwich ruthenium(II) complexes with strong hydrogen bond acceptor ligands and their mechanism of action. J. Inorg. Biochem. 2010, 104, 93–104.10.1016/j.jinorgbio.2009.09.017Search in Google Scholar PubMed

David, S.; Perkins, R. S.; Fronczek, F. R.; Kasiri, S.; Mandal, S. S.; Srivastava, R. S. Synthesis, characterization, and anticancer activity of ruthenium-pyrazole complexes. J. Inorg. Biochem. 2012, 111, 33–39.10.1016/j.jinorgbio.2012.02.022Search in Google Scholar PubMed

Debreczeni, J. E.; Bullock, A. N.; Atilla, G. E.; Williams, D. S.; Bregman, H.; Knapp, S.; Meggers, E. Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Angew Chem. Int. Ed. Engl. 2006, 45, 1580–1585.10.1002/anie.200503468Search in Google Scholar PubMed

Deubel, D. V.; Lau, J. K. In silico evolution of substrate selectivity: comparison of organometallic ruthenium complexes with the anticancer drug cisplatin. Chem. Commun. (Camb.) 2006, 2451–2453.10.1039/b601590eSearch in Google Scholar PubMed

Dorcier, A.; Hartinger, C. G.; Scopelliti, R.; Fish, R. H.; Keppler, B. K.; Dyson, P. J. Studies on the reactivity of organometallic Ru-, Rh- and Os-PTA complexes with DNA model compounds. J. Inorg. Biochem. 2008, 102, 1066–1076.10.1016/j.jinorgbio.2007.10.016Search in Google Scholar PubMed

Dougan, S. J.; Melchart, M.; Habtemariam, A.; Parsons, S.; Sadler, P. J. Phenylazo-pyridine and phenylazo-pyrazole chlorido ruthenium(II) arene complexes: arene loss, aquation, and cancer cell cytotoxicity. Inorg. Chem. 2006, 45, 10882–10894.10.1021/ic061460hSearch in Google Scholar PubMed

Dougan, S. J.; Habtemariam, A.; McHale, S. E.; Parsons, S.; Sadler, P. J. Catalytic organometallic anticancer complexes. Proc. Natl. Acad. Sci. USA2008, 105, 11628–11633.10.1073/pnas.0800076105Search in Google Scholar PubMed PubMed Central

Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. Importance of the π-ligand: remarkable effect of the cyclopentadienyl ring on the cytotoxicity of ruthenium PTA compounds. Organometallics2008a, 27, 1355–1357.10.1021/om800025aSearch in Google Scholar

Dutta, B.; Scopelliti, R.; Severin, K. Synthesis, structure, and reactivity of the methoxy-bridged dimer [Cp∧Ru(μ-OMe)]2 (Cp∧) η5-1-methoxy-2,4-di-tert-butyl-3-neopentylcyclopentadienyl). Organometallics2008b, 27, 423–429.10.1021/om700992dSearch in Google Scholar

Dutta, B.; Curchod, B. F.; Campomanes, P.; Solari, E.; Scopelliti, R.; Rothlisberger, U.; Severin, K. Reactions of alkynes with [RuCl(cyclopentadienyl)] complexes: the important first steps. Chemistry2010, 16, 8400–8409.10.1002/chem.201000855Search in Google Scholar PubMed

Egger, A. E.; Hartinger, C. G.; Renfrew, A. K.; Dyson, P. J. Metabolization of [Ru(η6-C6H5CF3)(PTA)Cl2]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand. J. Biol. Inorg. Chem. 2010, 15, 919–927.10.1007/s00775-010-0654-xSearch in Google Scholar PubMed

Etienne, S.; Beley, M. Preparation and study of ruthenium(II) 2,2′:6′,2″-terpyridine complexes linked by an O-CH2 spacer to thiophene moieties. Inorg. Chem. Comm., 2006, 9, 68–71.10.1016/j.inoche.2005.10.004Search in Google Scholar

Fernández, R.; Melchart, M.; Habtemariam, A.; Parsons, S.; Sadler, P. J. Use of chelating ligands to tune the reactive site of half-sandwich ruthenium(II)-arene anticancer complexes. Chemistry2004, 10, 5173–5179.10.1002/chem.200400640Search in Google Scholar PubMed

Fetzer, L.; Boff, B.; Ali, M.; Xiangjun, M.; Collin, J. P.; Sirlin, C.; Gaiddon, C.; Pfeffer, M. Library of second-generation cycloruthenated compounds and evaluation of their biological properties as potential anticancer drugs: passing the nanomolar barrier. Dalton Trans. 2011, 40, 8869–8878.10.1039/c1dt10322aSearch in Google Scholar PubMed

Fu, Y.; Habtemariam, A.; Basri, A. M.; Braddick, D.; Clarkson, G. J.; Sadler, P. J. Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity. Dalton Trans. 2011, 40, 10553–10562.10.1039/c1dt10937eSearch in Google Scholar PubMed

Furrer, M. A.; Schmitt, F.; Wiederkehr, M.; Juillerat-Jeanneret, L.; Therrien, B. Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage. Dalton Trans. 2012, 41, 7201–7211.10.1039/c2dt30193hSearch in Google Scholar PubMed

Futera, Z.; Klenko, J.; Sponer, J. E.; Sponer, J.; Burda, J. V. Interactions of the “piano-stool” [ruthenium(II) (η6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study. J. Comput. Chem. 2009, 30, 1758–1770.10.1002/jcc.21179Search in Google Scholar PubMed

Galindo, M. A.; Quirós, M.; Romero, M. A.; Navarro, J. A. Cyclic tetranuclear half-sandwich ruthenium(II) complexes with 4,7-phenanthroline and hydroxo bridges: crystal structure, solution behaviour and binding to nucleosides. J. Inorg. Biochem. 2008, 102, 1025–1032.10.1016/j.jinorgbio.2007.11.009Search in Google Scholar PubMed

Garcıa-Fernandez, A.; Dıez, J.; Manteca, A.; Sanchez, J.; Gamasa, M. P.; Lastra, E. Novel hydridotris(pyrazolyl)borate ruthenium(II) complexes containing the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane: synthesis and evaluation of DNA binding properties. Polyhedron2008, 27, 1214–1228.10.1016/j.poly.2007.12.013Search in Google Scholar

García-Fernandez, A.; Díez, J.; Gamasa, M. P.; Lastra, E. Facile modification of 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane phosphanes coordinated to ruthenium(II). Inorg. Chem. 2009, 48, 2471–2481.10.1021/ic801710ySearch in Google Scholar PubMed

García-Fernández, A.; Díez, J.; Manteca, A.; Sánchez, J.; García-Navas, R.; Sierra, B. G.; Mollinedo, F.; Gamasa, M. P.; Lastra, E. Antitumor activity of new hydridotris(pyrazolyl)borate ruthenium(II) complexes containing the phosphanes PTA and 1-CH3-PTA. Dalton Trans. 2010, 39, 10186–10196.10.1039/c0dt00206bSearch in Google Scholar PubMed

Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 2011, 54, 3–25.10.1021/jm100020wSearch in Google Scholar PubMed PubMed Central

Gaur, R.; Mishra, L. Synthesis and characterization of Ru(II)-DMSO-Cl-chalcone complexes: DNA binding, nuclease, and topoisomerase II inhibitory activity. Inorg. Chem. 2012, 51, 3059–3070.10.1021/ic202440rSearch in Google Scholar PubMed

Gauthier, S.; Solari, E.; Dutta, B.; Scopelliti, R.; Severin, K. A new coupling reaction for the synthesis of ruthenium half-sandwich complexes with sterically demanding cyclopentadienyl ligands. Chem. Commun. (Camb.) 2007, 1837–1839.10.1039/b618712aSearch in Google Scholar PubMed

Gianferrara, T.; Bratsos, I.; Iengo, E.; Milani, B.; Ostrić, A.; Spagnul, C.; Zangrando, E.; Alessio, E. Synthetic strategies towards ruthenium-porphyrin conjugates for anticancer activity. Dalton Trans. 2009, 10742–10756.10.1039/b911393bSearch in Google Scholar PubMed

Giannini, F.; Suss-Fink, G.; Furrer, J. Efficient oxidation of cysteine and glutathione catalyzed by a dinuclear areneruthenium trithiolato anticancer complex. Inorg. Chem. 2011, 50, 10552–10554.10.1021/ic201941jSearch in Google Scholar PubMed

Giannini, F.; Geiser, L.; Paul, L. E. H.; Roder, T.; Therrien, B.; Suss-Fink, G.; Furrer, J. Tuning the in vitro cell cytotoxicity of dinuclear arene ruthenium trithiolato complexes: influence of the arene ligand. J. Organomet. Chem. 2014, 783, 40–46.10.1016/j.jorganchem.2015.02.010Search in Google Scholar

Giannini, F.; Bartoloni, M.; Paul, L. E. H.; Süss-Fink, G.; Reymond, J.-L.; Furrer, J. Cytotoxic peptide conjugates of dinuclear arene ruthenium trithiolato complexes. Med. Chem. Commun. 2015, 6, 347–350.10.1039/C4MD00433GSearch in Google Scholar

Giovagnini, L.; Sitran, S.; Castagliuolo, I.; Brun, P.; Corsini, M.; Zanello, P.; Zoleo, A.; Maniero, A.; Biondi, B.; Fregona, D. Ru(III)-based compounds with sulfur donor ligands: synthesis, characterization, electrochemical behaviour and anticancer activity. Dalton Trans. 2008, 6699–6708.10.1039/b806341aSearch in Google Scholar PubMed

Gligorijević, N.; Aranđelović, S.; Filipović, L.; Jakovljević, K.; Janković, R.; Grgurić-Šipka, S.; Ivanović, I.; Radulović, S.; Tešić, Z. L. j. Picolinate ruthenium(II)-arene complex with in vitro antiproliferative and antimetastatic properties: comparison to a series of ruthenium(II)-arene complexes with similar structure. J. Inorg. Biochem. 2012, 108, 53–61.10.1016/j.jinorgbio.2011.12.002Search in Google Scholar

Gollas, B.; Speiser, B.; Zagos, I.; Maichle-Mossmer, C. Electrochemistry of ruthenium metallocenes Part 3. Synthesis and properties of ruthenium paracyclophane complexes with methacrylic acid and methacrylate ester substituents. J. Organomet. Chem. 2000, 602, 75–90.10.1016/S0022-328X(00)00121-2Search in Google Scholar

Gopal, Y. N. V.; Jayaraju, D.; Kondapi, A. K. Inhibition of topoisomerase II catalytic activity by two ruthenium compounds: a ligand-dependent mode of action. Biochemistry1999, 38, 4382–4388.10.1021/bi981990sSearch in Google Scholar

Gossens, C.; Tavernelli, I.; Rothlisberger, U. DNA structural distortions induced by ruthenium-arene anticancer compounds. J. Am. Chem. Soc. 2008, 130, 10921–10928.10.1021/ja800194aSearch in Google Scholar

Goze, C.; Sabatini, C.; Barbieri, A.; Barigelletti, F.; Ziessel, R. Ruthenium-terpyridine complexes with multiple ethynylpyrenyl or ethynyltoluyl subunits: X-ray structure, redox, and spectroscopic properties. Inorg. Chem. 2007, 46, 7341–7350.10.1021/ic070149cSearch in Google Scholar

Gras, M.; Therrien, B.; Süss-Fink, G.; Zava, O.; Dyson, P. J. Thiophenolato-bridged dinuclear arene ruthenium complexes: a new family of highly cytotoxic anticancer agents. Dalton Trans. 2010, 39, 10305–10313.10.1039/c0dt00887gSearch in Google Scholar

Grguric-Sipka, S. R.; Vilaplana, R. A.; Pérez, J. M.; Fuertes, M. A.; Alonso, C.; Alvarez, Y.; Sabo, T. J.; González-Vílchez, F. Synthesis, characterization, interaction with DNA and cytotoxicity of the new potential antitumour drug cis-K[Ru(eddp)Cl(2)]. J. Inorg. Biochem. 2003, 97, 215–220.10.1016/S0162-0134(03)00281-2Search in Google Scholar

Grgurić-Sipka, S.; Ivanović, I.; Rakić, G.; Todorović, N.; Gligorijević, N.; Radulović, S.; Arion, V. B.; Keppler, B. K.; Tesić, Z. L. j. Ruthenium(II)-arene complexes with functionalized pyridines: synthesis, characterization and cytotoxic activity. Eur. J. Med. Chem. 2010, 45, 1051–1058.10.1016/j.ejmech.2009.11.055Search in Google Scholar PubMed

Groessl, M.; Hartinger, C. G.; Dyson, P. J.; Keppler, B. K. CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. J. Inorg. Biochem. 2008, 102, 1060–1065.10.1016/j.jinorgbio.2007.11.018Search in Google Scholar PubMed

Groessl, M.; Tsybin, Y. O.; Hartinger, C. G.; Keppler, B. K.; Dyson, P. J. Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. J. Biol. Inorg. Chem. 2009, 15, 677–688.10.1007/s00775-010-0635-0Search in Google Scholar PubMed PubMed Central

Gu, S.; Liu, B.; Chen, J.; Wu, H.; Chen, W. Synthesis, structures, and properties of ruthenium(II) complexes of N-(1,10-phenanthrolin-2-yl)imidazolylidenes. Dalton Trans. 2012, 41, 962–970.10.1039/C1DT11269DSearch in Google Scholar

Gupta, G.; Nowak-Sliwinska, P.; Herrero, N.; Dyson, P. J.; Therrien, B. Highly water soluble trithiolato-bridged dinuclear arene ruthenium complexes. Inorg. Chim. Acta2015, 423, 524–529.10.1016/j.ica.2014.09.013Search in Google Scholar

Habtemariam, A.; Melchart, M.; Fernandez, R.; Parsons, S.; Oswald, I. D.; Parkin, A.; Fabbiani, F. P.; Davidson, J. E.; Dawson, A.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J. Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands. J. Med. Chem. 2006, 49, 6858–6868.10.1021/jm060596mSearch in Google Scholar PubMed

Han, Y. F.; Jia, W. G.; Yu, W. B.; Jin, G. X. Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units. Chem. Soc. Rev. 2009, 38, 3419–3434.10.1039/b901649jSearch in Google Scholar PubMed

Han, Y. F.; Li, H.; Fei, Y.; Lin, Y. J.; Zhang, W. Z.; Jin, G. X. Synthesis and structural characterization of binuclear half-sandwich iridium, rhodium and ruthenium complexes containing 4,4′-dipyridyldisulfide (4DPDS) ligands. Dalton Trans. 2010, 39, 7119–7124.10.1039/c0dt00057dSearch in Google Scholar PubMed

Hanif, M.; Henke, H.; Meier, S. M.; Martic, S.; Labib, M.; Kandioller, W.; Jakupec, M. A.; Arion, V. B.; Kraatz, H.; Keppler, B. K.; Hartinger, C. G. Is the reactivity of M(II)-arene complexes of 3-hydroxy-2(1H)-pyridones to biomolecules the anticancer activity determining parameter? Inorg. Chem. 2010a, 49, 7953–7963.10.1021/ic1009785Search in Google Scholar PubMed

Hanif, M.; Nazarov, A. A.; Hartinger, C. G.; Kandioller, W.; Jakupec, M. A.; Arion, V. B.; Dyson, P. J.; Keppler, B. K. Osmium(II)- versus ruthenium(II)-arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Trans. 2010b, 39, 7345–7352.10.1039/c003085fSearch in Google Scholar PubMed

Hanif, M.; Meier, S. M.; Kandioller, W.; Bytzek, A.; Hejl, M.; Hartinger, C. G.; Nazarov, A. A.; Arion, V. B.; Jakupec, M. A.; Dyson, P. J.; Keppler, B. K. From hydrolytically labile to hydrolytically stable Ru(II)-arene anticancer complexes with carbohydrate-derived co-ligands. J. Inorg. Biochem. 2011, 105, 224–231.10.1016/j.jinorgbio.2010.10.004Search in Google Scholar PubMed

Hanif, M.; Nazarov, A. A.; Legin, A.; Groessl, M.; Arion, V. B.; Jakupec, M. A.; Tsybin, Y. O.; Dyson, P. J.; Keppler, B. K.; Hartinger, C. G. Maleimide-functionalised organoruthenium anticancer agents and their binding to thiol-containing biomolecules. Chem. Commun. (Camb.) 2012, 48, 1475–1477.10.1039/C1CC14713GSearch in Google Scholar

Hannon, M. J. Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem. 2007, 79, 2243–2261.10.1351/pac200779122243Search in Google Scholar

Hara, K.; Sugihara, H.; Tachibana, Y.; Islam, A.; Yanagida, M.; Sayama, K.; Arakawa, H. Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers. Langmuir2001, 17, 5992–5999.10.1021/la010343qSearch in Google Scholar

Hartinger, C. G.; Casini, A.; Duhot, C.; Tsybin, Y. O.; Messori, L.; Dyson, P. J. Stability of an organometallic ruthenium-ubiquitin adduct in the presence of glutathione: relevance to antitumour activity. J. Inorg. Biochem. 2008, 102, 2136–2141.10.1016/j.jinorgbio.2008.08.002Search in Google Scholar

Heffeter, P.; Bock, K.; Atil, B.; Hoda, M. A. R.; Korner, W.; Bartel, C.; Jungwirth, U.; Keppler, B. K.; Micksche, M.; Berger, W.; Koellensperger, G. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J. Biol. Inorg. Chem. 2010, 15, 737–748.10.1007/s00775-010-0642-1Search in Google Scholar

Helena, G. M.; Morais, T. S.; Florindo, P.; Piedade, M. F.; Moreno, V.; Ciudad, C.; Noe, V. Inhibition of cancer cell growth by ruthenium(II) cyclopentadienyl derivative complexes with heteroaromatic ligands. J. Inorg. Biochem. 2009, 103, 354–361.10.1016/j.jinorgbio.2008.11.016Search in Google Scholar

Henke, H.; Kandioller, W.; Hanif, M.; Keppler, B. K.; Hartinger, C. G. Organometallic ruthenium and osmium compounds of pyridin-2- and -4-ones as potential anticancer agents. Chem. Biodivers. 2012, 9, 1718–1727.10.1002/cbdv.201200005Search in Google Scholar

Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Metal-induced B-H activation: addition of methyl acetylene carboxylates to Cp*Rh-, Cp*Ir-, (p-cymene)Ru-, and (p-cymene)Os half-sandwich complexes containing the chelating 1,2-dicarba-closo-dodecaborane-1,2-dithiolate ligand. Chemistry2000, 6, 3026–3032.10.1002/1521-3765(20000818)6:16<3026::AID-CHEM3026>3.0.CO;2-VSearch in Google Scholar

Herman, A.; Tanski, J. M.; Tibbetts, M. F.; Anderson, C. M. Synthesis, characterization, and in vitro evaluation of a potentially selective anticancer, mixed-metal [ruthenium(III)-platinum(II)] trinuclear complex. Inorg. Chem. 2008, 47, 274–280.10.1021/ic062419hSearch in Google Scholar

Hillard, E .A.; Jaouen, G. Bioorganometallics: future trends in drug discovery, analytical Chemistry and catalysis. Organometallics2011, 30, 20–27.10.1021/om100964hSearch in Google Scholar

Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Half-sandwich complexes with 4,7-dihydroxy-1,10-phenanthroline: water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to the generation of an oxyanion on the catalyst ligand. Organometallics2004, 23, 1480–1483.10.1021/om030382sSearch in Google Scholar

Hirano, M.; Shibasaki, T.; Komiya, S.; Bennett, M. A. Synthesis of and stereospecific hydride migration in cationic (tricyclic arene)(cyclooctadiene)ruthenium(II) complexes. Organometallics2002, 21, 5738–5745.10.1021/om0205997Search in Google Scholar

Hirano, M.; Sakate, Y.; Komine, N.; Komiya, S.; Bennett, M. A. Isolation of trans-2,5-bis(methoxycarbonyl)ruthenacyclopentane by oxidative coupling of methyl acrylate on ruthenium(0) as an active intermediate for tail-to-tail selective catalytic dimerization. Organometallics2009, 28, 4902–4905.10.1021/om9004065Search in Google Scholar

Hirano, M.; Sakate, Y.; Komine, N.; Komiya, S.; Wang, X.; Bennett, M. A. Stoichiometric regio- and stereoselective oxidative coupling reactions of conjugated dienes with ruthenium(0). A mechanistic insight into the origin of selectivity. Organometallics2011, 30, 768–777.10.1021/om100956fSearch in Google Scholar

Hirano, M.; Sakate, Y.; Inoue, H.; Arai, Y.; Komine, N.; Komiya, S.; Wang, X.; Bennett, M. A. Synthesis of conjugated diene complexes of ruthenium(0) derived from Ru(η6-naphthalene)(η4-1,5-COD): Z to E isomerisation of coordinated 1,3-pentadiene. J. Organomet. Chem. 2012, 708–709, 46–57.10.1016/j.jorganchem.2012.02.018Search in Google Scholar

Hoeschele, J. D.; Habtemariam, A.; Muir, J.; Sadler, P. J. 106Ru radiolabelling of the antitumour complex [(η6-fluorene)Ru(en)Cl]PF6. Dalton Trans. 2007, 4974–4979.10.1039/b706246jSearch in Google Scholar PubMed

Hofmeier, H.; Andres, P. R.; Schubert, U. S. Triads containing terpyridine-ruthenium(II) complexes and the perylene fluorescent dye. Metal-Containing and Metallo-Supramolecular Polymers and Materials, ACS Symposium Series, Chapter 7, 2006; Vol. 928, pp. 86–96.10.1021/bk-2006-0928.ch007Search in Google Scholar

Hostetter, A. A.; Miranda, M. L.; DeRose, V. J.; McFarlane Holman, K. L. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro. J. Biol. Inorg. Chem. 2011, 16, 1177–1185.10.1007/s00775-011-0806-7Search in Google Scholar PubMed PubMed Central

Hotze, A. C.; Bacac, M.; Velders, A. H.; Jansen, B. A.; Kooijman, H.; Spek, A. L.; Haasnoot, J. G.; Reedijk, J. New cytotoxic and water-soluble bis(2-phenylazopyridine)ruthenium(II) complexes. J. Med. Chem. 2003, 46, 1743–1750.10.1021/jm021110eSearch in Google Scholar PubMed

Hu, W.; Luo, Q.; Ma, X.; Wu, K.; Liu, J.; Chen, Y.; Xiong, S.; Wang, J.; Sadler, P. J.; Wang, F. Arene control over thiolate to sulfinate oxidation in albumin by organometallic ruthenium anticancer complexes. Chem. Eur. J. 2009, 15, 6586–6594.10.1002/chem.200900699Search in Google Scholar PubMed

Jain, A.; Wang, J.; Mashack, E. R.; Winkel, B. S. J.; Brewer, K. J. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands. Inorg. Chem. 2009, 48, 9077–9084.10.1021/ic900190aSearch in Google Scholar PubMed

Jakupec, M. A.; Reisner, E.; Eichinger, A.; Pongratz, M.; Arion, V. B.; Galanski, M.; Hartinger, C. G.; Keppler, B. K. Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J. Med. Chem. 2005, 48, 2831–2837.10.1021/jm0490742Search in Google Scholar PubMed

Jerphagnon, T.; Gayet, A. J.; Berthiol, F.; Ritleng, V.; Mrsić, N.; Meetsma, A.; Pfeffer, M.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. Fast racemisation of chiral amines and alcohols by using cationic half-sandwich ruthena- and iridacycle catalysts. Chemistry2009, 15, 12780–12790.10.1002/chem.200902103Search in Google Scholar PubMed

Jiménez-Tenorio, M.; Palacios, M. D.; Puerta, M. C.; Valerga, P. Half-sandwich hydride complexes of ruthenium with bidentate phosphinoamine ligands: proton-transfer reactions to [(C5R5)RuH(L)] [R=H, Me; L=dippae, (R,R)-dippach]. Inorg. Chem. 2007, 46, 1001–1012.10.1021/ic061745uSearch in Google Scholar PubMed

Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P.; Moncho, S.; Ujaque, G.; Lledós, A. Proton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabile P,N ligands: experimental and density functional theory studies. Inorg. Chem. 2010, 49, 6035–6057.10.1021/ic100710dSearch in Google Scholar PubMed

Kamatchi, T. S.; Chitrapriya, N.; Lee, H.; Fronczek, C. F.; Fronczek, F. R.; Natarajan, K. Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2;6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: impact of oxidation state and co-ligands on anticancer activity in vitro. Dalton Trans. 2012, 41, 2066–2077.10.1039/C1DT11273BSearch in Google Scholar PubMed

Kandioller, W.; Hartinger, C. G.; Nazarov, A. A.; Bartel, C.; Skocic, M.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. Maltol-derived ruthenium-cymene complexes with tumor inhibiting properties: the impact of ligand-metal bond stability on anticancer activity in vitro. Chem. Eur. J. 2009, 15, 12283–12291.10.1002/chem.200901939Search in Google Scholar PubMed

Karki, S. S.; Thota, S.; Darj, S. Y.; Balzarini, J.; De Clercq, E. Synthesis, anticancer, and cytotoxic activities of some mononuclear Ru(II) compounds. Bioorg. Med. Chem. 2007, 15, 6632–6641.10.1016/j.bmc.2007.08.014Search in Google Scholar PubMed

Kilpin, K. J.; Cammack, S. M.; Clavel, C. M.; Dyson, P. J. Ruthenium(II) arene PTA (RAPTA) complexes: impact of enantiomerically pure chiral ligands. Dalton Trans. 2013, 2008–2014.10.1039/C2DT32333HSearch in Google Scholar

Koizumi, T.; Tomon, T.; Tanaka, K. Terpyridine-analogous (N,N,C)-tridentate ligands: synthesis, structures, and electrochemical properties of ruthenium(II) complexes bearing tridentate pyridinium and pyridinylidene ligands. Organometallics2003, 22, 970–975.10.1021/om020637mSearch in Google Scholar

Komiya, S.; Hurano, M. Group 8 (Fe, Ru, Os) metal compounds. In Synthesis of Organometallic Compounds: A Practical Guide. Komiya, S., Ed. John Wiley & Sons: England, 1997; pp. 159–203.Search in Google Scholar

Kopf, H.; Pietraszuk, C.; Hübner, E.; Burzlaff, N. Ruthenium carbene, vinylidene, and allenylidene complexes with a bis(3,5-dimethylpyrazol-1-yl)acetato heteroscorpionate ligand. Organometallics2006, 25, 2533–2546.10.1021/om060050ySearch in Google Scholar

Kopf, H.; Holzberger, B.; Pietraszuk, C.; Hübner, E.; Burzlaff, N. Neutral ruthenium carbene complexes bearing N,N,O heteroscorpionate ligands: syntheses and activity in metathesis reactions. Organometallics2008, 27, 5894–5905.10.1021/om8006129Search in Google Scholar

Kostrhunova, H.; Florian, J.; Novakova, O.; Peacock, A. F.; Sadler, P. J.; Brabec, V. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media. J. Med. Chem. 2008, 51, 3635–3643.10.1021/jm701538wSearch in Google Scholar PubMed

Kou, J. F.; Qian, C.; Wang, J. Q.; Chen, X.; Wang, L. L.; Chao, H.; Ji, L. N. Chiral ruthenium(II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J. Biol. Inorg. Chem. 2012, 17, 81–96.10.1007/s00775-011-0831-6Search in Google Scholar PubMed

Kowol, C. R.; Reisner, E.; Chiorescu, I.; Arion, V. B.; Galanski, M.; Deubel, D. V.; Keppler, B. K. An electrochemical study of antineoplastic gallium, iron and ruthenium complexes with redox noninnocent α-N-heterocyclic chalcogensemicarbazones. Inorg. Chem. 2008, 47, 11032–11047.10.1021/ic8013249Search in Google Scholar PubMed

Linares, F.; Galindo, M. A.; Galli, S.; Romero, M. A.; Navarro, J. A.; Barea, E. Tetranuclear coordination assemblies based on half-sandwich ruthenium(II) complexes: noncovalent binding to DNA and cytotoxicity. Inorg. Chem. 2009, 48, 7413–7420.10.1021/ic900980ySearch in Google Scholar PubMed

Liu, H. K.; Wang, F.; Parkinson, J. A.; Bella, J.; Sadler, P. J. Ruthenation of duplex and single-stranded d(CGGCCG) by organometallic anticancer complexes. Chemistry2006, 12, 6151–6165.10.1002/chem.200600110Search in Google Scholar PubMed

Liu, J.; Zheng, W.; Shi, S.; Tan, C.; Chen, J.; Zheng, K.; Ji, L. Synthesis, antitumor activity and structure-activity relationships of a series of Ru(II) complexes. J. Inorg. Biochem. 2008, 102, 193–202.10.1016/j.jinorgbio.2007.07.035Search in Google Scholar PubMed

Liu, X. W.; Chen, Z. G.; Li, L.; Chen, Y. D.; Lu, J. L.; Zhang, D. S. DNA-binding, photocleavage studies of ruthenium(II) complexes with 2-(2-quinolinyl) imidazo[4,5-f][1,10]phenanthroline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 102C, 142–149.10.1016/j.saa.2012.10.025Search in Google Scholar PubMed

Loughrey, B. T.; Healy, P. C.; Parsons, P. G.; Williams, M. L. Selective cytotoxic Ru(II) arene Cp* complex salts [R-PhRuCp*]+X- for X=BF4-, PF6-, and BPh4. Inorg. Chem. 2008, 47, 8589–8591.10.1021/ic801159fSearch in Google Scholar PubMed

Loughrey, B. T.; Cunning, B. V.; Healy, P. C.; Brown, C. L.; Parsons, P. G.; Williams, M. L. Selective, cytotoxic organoruthenium(II) full-sandwich complexes: a structural, computational and in vitro biological study. Chem. Asian J. 2012, 7, 112–121.10.1002/asia.201100637Search in Google Scholar PubMed

Magennis, S. W.; Habtemariam, A.; Novakova, O.; Henry, J. B.; Meier, S.; Parsons, S.; Oswald, I. D.; Brabec, V.; Sadler, P. J. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg. Chem. 2007, 46, 5059–5068.10.1021/ic062111qSearch in Google Scholar PubMed

Małecki, J. G.; Kruszynski, R.; Mazurak, Z. Synthesis, spectroscopic and structural characterizations of two new complexes of ruthenium with 2-(hydroxymethyl)benzimidazole and 1,10-phenanthroline ligands. Polyhedron2009, 28, 3891–3898.10.1016/j.poly.2009.08.035Search in Google Scholar

Marchetti, F.; Pettinari, C.; Pettinari, R.; Cerquetella, A.; Di Nicola, C.; Macchioni, A.; Zuccaccia, D.; Monari, M.; Piccinelli, F. Synthesis and intramolecular and interionic structural characterization of half-sandwich (arene)ruthenium(II) derivatives of bis(pyrazolyl)alkanes. Inorg. Chem. 2008, 47, 11593–11603.10.1021/ic801150cSearch in Google Scholar PubMed

Martínez, A.; Suárez, J.; Shand, T.; Magliozzo, R. S.; Sánchez-Delgado, R. A. Interactions of arene-Ru(II)-chloroquine complexes of known antimalarial and antitumor activity with human serum albumin (HSA) and transferrin. J. Inorg. Biochem. 2011, 105, 39–45.10.1016/j.jinorgbio.2010.09.005Search in Google Scholar PubMed PubMed Central

Mazumder, U. K.; Gupta, M.; Karki, S. S.; Bhattacharya, S.; Rathinasamy, S.; Thangavel, S. Synthesis, anticancer and antibacterial activity of some novel mononuclear Ru(II) complexes. Chem. Pharm. Bull. (Tokyo) 2004, 52, 178–185.10.1248/cpb.52.178Search in Google Scholar PubMed

McNae, I. W.; Fishburne, K.; Habtemariam, A.; Hunter, T. M.; Melchart, M.; Wang, F.; Walkinshaw, M. D.; Sadler, P. J. Half-sandwich arene ruthenium(II)-enzyme complex. Chem. Commun. (Camb.) 2004, 1786–1787.10.1039/B408141BSearch in Google Scholar

Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol. 2007, 11, 287–292.10.1016/j.cbpa.2007.05.013Search in Google Scholar PubMed

Meggers, E. Targeting proteins with metal complexes. Chem. Commun. 2009, 1001–1010.10.1039/b813568aSearch in Google Scholar PubMed

Meggers, E.; Atilla-Gokcumen, G. E.; Gründler, K.; Frias, C.; Prokop, A. Inert ruthenium half-sandwich complexes with anticancer activity. Dalton Trans. 2009, 10882–10888.10.1039/b917792bSearch in Google Scholar PubMed

Melchart, M.; Sadler, P. J. Ruthenium arene anticancer complexes. In Bioorganometallics. Jaouen, G., Ed. Wiley-VCH Verlag GmbH 6 Co. KGAA: Weinheim, 2006; pp. 39–62.10.1002/3527607692.ch2Search in Google Scholar

Melchart, M.; Habtemariam, A.; Parsons, S.; Sadler, P. J. Chlorido-, aqua-, 9-ethylguanine- and 9-ethyladenine-adducts of cytotoxic ruthenium arene complexes containing O,O-chelating ligands. J. Inorg. Biochem. 2007, 101, 1903–1912.10.1016/j.jinorgbio.2007.04.018Search in Google Scholar PubMed

Mendoza-Ferri, M. G.; Hartinger, C. G.; Mendoza, M. A.; Groessl, M.; Egger, A. E.; Eichinger, R. E.; Mangrum, J. B.; Farrell, N. P.; Maruszak, M.; Bednarski, P. J.; Klein, F.; Jakupec, M. A.; Nazarov, A. A.; Severin, K.; Keppler, B. K. Transferring the concept of multinuclearity to ruthenium complexes for improvement of anticancer activity. J. Med. Chem. 2009, 52, 916–925.10.1021/jm8013234Search in Google Scholar PubMed PubMed Central

Micallef, L. S.; Loughrey, B. T.; Healy, P. C.; Parsons, P. G.; Williams, M. L. Mono- and 1,10-disubstituted organoruthenium cyclopentadiene complexes: synthesis, structural characterization, and antitumoral evaluation. Organometallics2011, 30, 1395–1403.10.1021/om100928sSearch in Google Scholar

Mitra, R.; Das, S.; Shinde, S. V.; Sinha, S.; Somasundaram K.; Samuelson, A. G. Anticancer activity of hydrogen-bond-stabilized half-sandwich Ru(II) complexes with heterocycles. Chem. Eur. J. 2012, 18, 12278–12291.10.1002/chem.201200938Search in Google Scholar PubMed

Mitsopoulou, C. A.; Veroni, I.; Philippopoulos, A. I.; Falaras, P. Synthesis, characterization and sensitization properties of two novel mono and bis carboxyl-dipyrido-phenazine ruthenium(II) charge transfer complexes. J. Photochem. Photobio. A Chem. 2007, 191, 6–12.10.1016/j.jphotochem.2007.03.024Search in Google Scholar

Morais, T. S.; Santos, F. C.; Jorge, T. F.; Corte-Real, L.; Madeira, P. J. A.; Marques, F.; Robalo, M. P.; Matos, A.; Santos, I.; Garcia, M. H. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution. J. Inorg. Biochem. 2014, 130, 1–14.10.1016/j.jinorgbio.2013.09.013Search in Google Scholar PubMed

Morris, R. E.; Aird, R. E.; Murdoch Pdel, S.; Chen, H.; Cummings, J.; Hughes, N. D.; Parsons, S.; Parkin, A.; Boyd, G.; Jodrell, D. I.; Sadler, P. J. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem. 2001, 44, 3616–3621.10.1021/jm010051mSearch in Google Scholar PubMed

Mura, P.; Camalli, M.; Messori, L.; Piccioli, F.; Zanello, P.; Corsini, M. Synthesis, structural characterization, solution Chemistry and preliminary biological studies of the ruthenium(III) complexes [TzH][trans-RuCl4(Tz)2] and [TzH][trans-RuCl4(DMSO)(Tz)].(DMSO), the thiazole analogues of antitumor ICR and NAMI-A. Inorg. Chem. 2004, 43, 3863–3670.10.1021/ic0354116Search in Google Scholar PubMed

Nakabayashi, Y.; Watanabe, Y.; Nakao, T.; Yamauchi, O. Interactions of mixed ligand ruthenium(II) complexes containing an amino acid and 1,10-phenanthroline with DNA. Inorg. Chim. Acta2004, 357, 2553–2560.10.1016/j.ica.2004.02.020Search in Google Scholar

Nazarov, A. A.; Risse, J.; Ang, W. H.; Schmitt, F.; Zava, O.; Ruggi, A.; Groessl, M.; Scopelitti, R.; Juillerat-Jeanneret, L.; Hartinger, C. G.; Dyson, P. J. Anthracene-tethered ruthenium(II) arene complexes as tools to visualize the cellular localization of putative organometallic anticancer compounds. Inorg. Chem. 2012, 51, 3633–3639.10.1021/ic202530jSearch in Google Scholar PubMed

Niyazi, H.; Hall, J. P.; O’Sullivan, K.; Winter, G.; Sorensen, T.; Kelly, J. M.; Cardin, C. J. Crystal structures of Λ-[Ru(phen)2dppz]2+ with oligonucleotides containing TA/TA and AT/AT steps show two intercalation modes. Nat. Chem. 2012, 4, 621–628.10.1038/nchem.1397Search in Google Scholar PubMed

Novakova, O.; Chen, H.; Vrana, O.; Rodger, A.; Sadler, P. J.; Brabec, V. DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry2003, 42, 11544–11554.10.1021/bi034933uSearch in Google Scholar PubMed

Novakova, O.; Kasparkova, J.; Bursova, V.; Hofr, C.; Vojtiskova, M.; Chen, H.; Sadler, P. J.; Brabec, V. Conformation of DNA modified by monofunctional Ru(II) arene complexes: recognition by DNA binding proteins and repair. Relationship to cytotoxicity. Chem. Biol. 2005, 12, 121–129.10.1016/j.chembiol.2004.11.008Search in Google Scholar PubMed

Novakova, O.; Malina, J.; Suchankova, T.; Kasparkova, J.; Bugarcic, T.; Sadler, P. J.; Brabec, V. Energetics, conformation, and recognition of DNA duplexes modified by monodentate Ru(II) complexes containing terphenyl arenes. Chemistry2010, 16, 5744–5754.10.1002/chem.200903078Search in Google Scholar PubMed

Nowak-Sliwinska, P.; van Beijnum, J. R.; Casini, A.; Nazarov, A. A.; Wagnieres, G.; van den Bergh, H.; Dyson, P. J.; Griffioen, A. W. Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J. Med. Chem. 2011, 54, 3895–3902.10.1021/jm2002074Search in Google Scholar PubMed

Ohki, Y.; Sadohara, H.; Takikawa, Y.; Tatsumi, K. A half-sandwich ruthenium(II) complex containing a coordinatively unsaturated 2,6-dimesitylphenyl thiolate ligand. Angew Chem. Int. Ed. Engl. 2004, 43, 2290–2293.10.1002/anie.200353611Search in Google Scholar PubMed

Pagano, N.; Maksimoska, J.; Bregman, H.; Williams, D. S.; Webster, R. D.; Xue, F.; Meggers, E. Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand. Org. Biomol. Chem. 2007, 5, 1218–1227.10.1039/b700433hSearch in Google Scholar PubMed

Page, S. Ruthenium compounds as anticancer agents. Educ. Chem. 2012, 26–29. Available at: http://www.rsc.org/eic.Search in Google Scholar

Pascu, G. I.; Hotze, A. C.; Sanchez-Cano, C.; Kariuki, B. M.; Hannon, M. J. Dinuclear ruthenium(II) triple-stranded helicates: luminescent supramolecular cylinders that bind and coil DNA and exhibit activity against cancer cell lines. Angew Chem. Int. Ed. Engl. 2007, 46, 4374–4378.10.1002/anie.200700656Search in Google Scholar PubMed

Peacock, A. F.; Sadler, P. J. Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. Chem. Asian J. 2008, 3, 1890–1899.10.1002/asia.200800149Search in Google Scholar PubMed

Peacock, A. F.; Habtemariam, A.; Fernández, R.; Walland, V.; Fabbiani, F. P.; Parsons, S.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J. Am. Chem. Soc. 2006, 128, 1739–1748.10.1021/ja055886rSearch in Google Scholar PubMed

Peacock, A. F.; Habtemariam, A.; Moggach, S. A.; Prescimone, A.; Parsons, S.; Sadler, P. J. Chloro half-sandwich osmium(II) complexes: influence of chelated N,N-ligands on hydrolysis, guanine binding, and cytotoxicity. Inorg. Chem. 2007a, 46, 4049–4059.10.1021/ic062350dSearch in Google Scholar PubMed

Peacock, A. F.; Parsons, S.; Sadler, P. J. Tuning the hydrolytic aqueous chemistry of osmium arene complexes with N,O-chelating ligands to achieve cancer cell cytotoxicity. J. Am. Chem. Soc. 2007b, 129, 3348–3357.10.1021/ja068335pSearch in Google Scholar

Pelletier, F.; Comte, V.; Massard, A.; Wenzel, M.; Toulot, S.; Richard, P.; Picquet, M.; Le Gendre, P.; Zava, O.; Edafe, F.; Casini, A.; Dyson, P. J. Development of bimetallic titanocene-ruthenium-arene complexes as anticancer agents: relationships between structural and biological properties. J. Med. Chem. 2010, 53, 6923–6933.10.1021/jm1004804Search in Google Scholar

Pertici, P.; Verrazzani, A.; Vitulli, G.; Baldwin, R.; Bennett, M. A. Stoichiometric alkyne cyclotrimerization at a ruthenium centre: a new synthetic route to Ru(η6-arene)(η4-cycloocta-1,5-diene) complexes. J. Organomet. Chem. 1998, 551, 37–47.10.1016/S0022-328X(97)00425-7Search in Google Scholar

Pitto-Barry, A.; Barry, N. P.; Zava, O.; Deschenaux, R.; Dyson, P. J.; Therrien, B. Double targeting of tumours with pyrenyl-modified dendrimers encapsulated in an arene-ruthenium metallaprism. Chemistry2011, 17, 1966–1971.10.1002/chem.201002634Search in Google Scholar

Pitto-Barry, A.; Zava, O.; Dyson, P. J.; Deschenaux, R.; Therrien, B. Enhancement of cytotoxicity by combining pyrenyl-dendrimers and arene ruthenium metallacages. Inorg. Chem. 2012, 51, 7119–7124.10.1021/ic202739dSearch in Google Scholar

Procopio, E. Q.; Rojas, S.; Padial, N. M.; Galli, S.; Masciocchi, N.; Linares, F.; Miguel, D.; Oltra, J. E.; Navarro, J. A.; Barea, E. Study of the incorporation and release of the non-conventional half-sandwich ruthenium(II) metallodrug RAPTA-C on a robust MOF. Chem. Commun. (Camb.) 2011, 47, 11751–11753.10.1039/c1cc14594kSearch in Google Scholar

Pruchnik, F. P.; Gałdecka, E.; Gałdecki, Z.; Kowalski, A. Carbonyl ruthenium(III) complexes with 1,10-phenanthroline and 2,2′-bipyridine. Polyhedron1999, 18, 2091–2097.10.1016/S0277-5387(99)00079-0Search in Google Scholar

Rajalakshmanan, E.; Alexander, V. Synthesis, luminescence, and electrochemical studies of tris(homoleptic) ruthenium(II) and osmium(II) complexes of 6′-tolyl-2,2′:4′,2″-terpyridine. Inorg. Chem. 2007, 46, 6252–6260.10.1021/ic0700093Search in Google Scholar PubMed

Rajapakse, C. S. K.; Martinez, A.; Naoulou, B.; Jarzecki, A. A.; Suarez, L.; Deregnaucourt, C.; Sinou, V.; Schrével, J.; Musi, E.; Ambrosini, G.; Schwartz, G. K.; Sanchez-Delgado, R. A. Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine. Inorg. Chem. 2009, 48, 1122–1131.10.1021/ic802220wSearch in Google Scholar PubMed PubMed Central

Rajendiran, V.; Murali, M.; Suresh, E.; Palaniandavar, M.; Periasamy, V. S.; Akbarsha, M. A. Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2′-dipyridylamine and diimines. Dalton Trans. 2008, 2157–2170.10.1039/b715077fSearch in Google Scholar PubMed

Ratanaphan, A.; Temboot, P.; Dyson, P. J. In vitro ruthenation of human breast cancer suppressor gene 1 (BRCA1) by the antimetastasis compound RAPTA-C and its analogue carboRAPTA-C. Chem. Biodivers. 2010, 7, 1290–1302.10.1002/cbdv.200900288Search in Google Scholar

Renfrew, A. K.; Scopelliti, R.; Dyson, P. J. Use of perfluorinated phosphines to provide thermomorphic anticancer complexes for heat-based tumor targeting. Inorg. Chem. 2010, 49, 2239–2246.10.1021/ic9020433Search in Google Scholar

Ritleng, V.; Bertani, P.; Pfeffer, M.; Sirlin, C.; Hirschinger, J. Optically active ortho-metalated half-sandwich ruthenium complexes: solid-state NMR as a convenient tool to analyze mixtures of diastereomers. Inorg. Chem. 2001, 40, 5117–5122.10.1021/ic010204wSearch in Google Scholar

Romerosa, A.; Campos-Malpartida, T.; Lidrissi, C.; Saoud, M.; Serrano-Ruiz, M.; Peruzzini, M.; Garrido-Cárdenas, J. A.; García-Maroto, F. Synthesis, characterization, and DNA binding of new water-soluble cyclopentadienyl ruthenium(II) complexes incorporating phosphines. Inorg. Chem. 2006, 45, 1289–1298.10.1021/ic051053qSearch in Google Scholar

Ruiz, J.; Vicente, C.; de Haro, C.; Bautista, D. A novel ruthenium(II) arene based intercalator with potent anticancer activity. Dalton Trans. 2009, 5071–5073.10.1039/b907296aSearch in Google Scholar

Sanchez-Delgado, R. A.; Navarro, M.; Perez, H.; Urbina, J. A. Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium- and rhodium-chloroquine complexes. J. Med. Chem. 1996, 39, 1095–1099.10.1021/jm950729wSearch in Google Scholar

Sava, G.; Bergamoa, A.; Dyson P. J. Metal-based antitumour drugs in the post-genomic era: what comes next?. Dalton Trans. 2011, 40, 9069–9075.10.1039/c1dt10522aSearch in Google Scholar

Schluter, A.; Bieber, K.; Sheldrick, W. S. Preparation, structure and coordination properties of (h-p-cymene)ruthenium(II) sandwich complexes of catechol and 5-hydroxyindole derivatives. Inorg. Chim. Acta2002, 340, 35–43.10.1016/S0020-1693(02)01074-5Search in Google Scholar

Schmid, W. F.; John, R. O.; Mühlgassner, G.; Heffeter, P.; Jakupec, M. A.; Galanski, M.; Berger, W.; Arion, V. B.; Keppler, B. K. Metal-based paullones as putative CDK inhibitors for antitumor chemotherapy. J. Med. Chem. 2007, 50, 6343–6355.10.1021/jm701042wSearch in Google Scholar PubMed

Schmitt, F.; Govindaswamy, P.; Süss-Fink, G.; Ang, W. H.; Dyson, P. J.; Juillerat-Jeanneret, L.; Therrien, B. Ruthenium porphyrin compounds for photodynamic therapy of cancer. J. Med. Chem. 2008, 51, 1811–1816.10.1021/jm701382pSearch in Google Scholar PubMed

Schmitt, F.; Govindaswamy, P.; Zava, O.; Süss-Fink, G.; Juillerat-Jeanneret, L.; Therrien, B. Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J. Biol. Inorg. Chem. 2009, 14, 101–109.10.1007/s00775-008-0427-ySearch in Google Scholar PubMed

Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T. J.; Sava, G.; Dyson, P. J. In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J. Med. Chem. 2005, 48, 4161–4171.10.1021/jm050015dSearch in Google Scholar PubMed

Scolaro, C.; Chaplin, A. B.; Hartinger, C. G.; Bergamo, A.; Cocchietto, M.; Keppler, B. K.; Sava, G.; Dyson, P. J. Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake; biomolecular interactions and efficacy. Dalton Trans. 2007, 5065–5072.10.1039/b705449aSearch in Google Scholar PubMed

Scolaro, C.; Hartinger, C. G.; Allardyce, C. S.; Keppler, B. K.; Dyson, P. J. Hydrolysis study of the bifunctional antitumour compound RAPTA-C, [Ru(η6-p-cymene)Cl2(PTA)]. J. Inorg. Biochem. 2008, 102, 1743–1748.10.1016/j.jinorgbio.2008.05.004Search in Google Scholar PubMed

Sharma, S.; Singh, S. K.; Chandra, M.; Pandey, D. S. DNA-binding behavior of ruthenium(II) complexes containing both group 15 donors and 2,2′:6′,2″-terpyridine. J. Inorg. Biochem. 2005, 99, 458–466.10.1016/j.jinorgbio.2004.10.021Search in Google Scholar PubMed

Shin, R. Y. C.; Bennett, M. A.; Goh, L. Y.; Chen, W.; Hockless, D. C. R.; Leong, W. K.; Mashima, K.; Willis A. C. Arene-ruthenium complexes of an acyclic thiolate-thioether and tridentate thioether derivatives resulting from ring-closure reactions. Inorg. Chem. 2003, 42, 96–106.10.1021/ic0203419Search in Google Scholar PubMed

Singh, S. K.; Joshi, S.; Singh, A. R.; Saxena, J. K.; Pandey, D. S. DNA binding and topoisomerase II inhibitory activity of water-soluble ruthenium(II) and rhodium(III) complexes. Inorg. Chem. 2007, 46, 10869–10876.10.1021/ic700885mSearch in Google Scholar PubMed

Stepanenko, I. N.; Casini, A.; Edafe, F.; Novak, M. S.; Arion, V. B.; Dyson, P. J.; Jakupec, M. A.; Keppler, B. K. Conjugation of organoruthenium(II) 3-(1H-benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and indolo[3,2-d]benzazepines to recombinant human serum albumin: a strategy to enhance cytotoxicity in cancer cells. Inorg. Chem. 2011, 50, 12669–12679.10.1021/ic201801eSearch in Google Scholar PubMed PubMed Central

Streu, C.; Carroll, P. J.; Kohli, R. K.; Meggers, E. Synthesis of cyclopentadienyl ruthenium complexes bearing pendant chelating picolinates through an electrophilic precursor. J. Organomet. Chem. 2008, 693, 551–556.10.1016/j.jorganchem.2007.11.024Search in Google Scholar PubMed PubMed Central

Sun, R. W.; Ng, M. F.; Wong, E. L.; Zhang, J.; Chui, S. S.; Shek, L.; Lau, T. C.; Che, C. M. Dual anti-angiogenic and cytotoxic properties of ruthenium(III) complexes containing pyrazolato and/or pyrazole ligands. Dalton Trans. 2009, 10712–10716.10.1039/b912236bSearch in Google Scholar PubMed

Süss-Fink, G. Arene ruthenium complexes as anticancer agents. Dalton Trans. 2010, 39, 1673–1688.10.1039/B916860PSearch in Google Scholar PubMed

Suss-Fink, G. Water-soluble arene ruthenium complexes: from serendipity to catalysis and drug design. J. Organomet. Chem. 2014, 751, 2–19.10.1016/j.jorganchem.2013.07.039Search in Google Scholar

Suss-Fink, G.; Khan, F.-A.; Juillerat-Jeanneret, L.; Dyson, P. J.; Renfrew, A. K. Synthesis and anticancer activity of long-chain isonicotinic ester ligand-containing arene ruthenium complexes and nanoparticles. J. Clust. Sci. 2010, 21, 313–324.10.1007/s10876-010-0298-6Search in Google Scholar

Tampier, S.; Müller, R.; Andrea Thorn, A.; Hübner, E.; Burzlaff, N. Synthesis, structure, and reactivity of ruthenium carboxylato and 2-oxocarboxylato complexes bearing the bis(3,5-dimethylpyrazol-1-yl)acetato ligand. Inorg. Chem. 2008, 47, 9624–9641.10.1021/ic8000224Search in Google Scholar PubMed

Tan, C.; Liu, J.; Chen, L.; Shi, S.; Ji, L. Synthesis, structural characteristics, DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. J. Inorg. Biochem. 2008, 102, 1644–1653.10.1016/j.jinorgbio.2008.03.005Search in Google Scholar PubMed

Therrien, B.; Ang, W. H.; Cherioux, F.; Vieille-Petit, L.; Juillerat-Jeanneret, L.; Suss-Fink, G.; Dyson, P. J. Remarkable anticancer activity of triruthenium-arene clusters compared to tetraruthenium-arene clusters. J. Clust. Sci. 2007, 18, 741–752.10.1007/s10876-007-0140-ySearch in Google Scholar

Tomaz, A. I.; Jakusch, T.; Morais, T. S.; Marques, F.; de Almeida, R. F.; Mendes, F.; Enyedy, E. A.; Santos, I.; Pessoa, J. C.; Kiss, T.; Garcia, M. H. [Ru(II)(η)5(-C)5(H)5(((bipy)(PPh)3))])(+), a promising large spectrum antitumor agent: cytotoxic activity and interaction with human serum albumin. J. Inorg. Biochem. 2012, 117, 261–269.10.1016/j.jinorgbio.2012.06.016Search in Google Scholar PubMed

Türkoglu, G.; Tampier, S.; Strinitz, F.; Heinemann, F. W.; Hübner, E.; Burzlaff, N. Ruthenium carbonyl complexes bearing bis(pyrazol-1-yl)carboxylato ligands. Organometallics2012, 31, 2166–2174.10.1021/om2009155Search in Google Scholar

Vajpayee, V.; Yang, Y. J.; Kang, S. C.; Kim, H.; Kim, I. S.; Wang, M.; Stang, P. J.; Chi, K. W. Hexanuclear self-assembled arene-ruthenium nano-prismatic cages: potential anticancer agents. Chem. Commun. (Camb.) 2011, 47, 5184–5186.10.1039/c1cc10167fSearch in Google Scholar PubMed PubMed Central

van Rijt, S. H.; Hebden, A. J.; Amaresekera, T.; Deeth, R. J.; Clarkson, G. J.; Parsons, S.; McGowan, P. C.; Sadler, P. J. Amide linkage isomerism as an activity switch for organometallic osmium and ruthenium anticancer complexes. J. Med. Chem. 2009a, 52, 7753–7764.10.1021/jm900731jSearch in Google Scholar PubMed

van Rijt, S. H.; Peacock, A. F.; Johnstone, R. D.; Parsons, S.; Sadler, P. J. Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives. Inorg. Chem. 2009b, 48, 1753–1762.10.1021/ic8020222Search in Google Scholar

Vargiu, A. V.; Robertazzi, A.; Magistrato, A.; Ruggerone, P.; Carloni, P. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations. J. Phys. Chem. B2008, 112, 4401–4409.10.1021/jp710078ySearch in Google Scholar

Velders, A. H.; Bergamo, A.; Alessio, E.; Zangrando, E.; Haasnoot, J. G.; Casarsa, C.; Cocchietto, M.; Zorzet, S.; Sava, G. Synthesis and chemical-pharmacological characterization of the antimetastatic NAMI-A-type Ru(III) complexes (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O)(dmso-S)(dmtp)] (dmtp=5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine). J. Med. Chem. 2004, 47, 1110–1121.10.1021/jm030984dSearch in Google Scholar

Vock, C. A.; Scolaro, C.; Phillips, A. D.; Scopelliti, R.; Sava, G.; Dyson, P. J. Synthesis, characterization, and in vitro evaluation of novel ruthenium(II) η6-arene imidazole complexes. J. Med. Chem. 2006, 49, 5552–5561.10.1021/jm060495oSearch in Google Scholar

Vock, C. A.; Ang, W. H.; Scolaro, C.; Phillips, A. D.; Lagopoulos, L.; Juillerat-Jeanneret, L.; Sava, G.; Scopelliti, R.; Dyson, P. J. Development of ruthenium antitumor drugs that overcome multidrug resistance mechanisms. J. Med. Chem. 2007, 50, 2166–2175.10.1021/jm070039fSearch in Google Scholar

Vrábel, M.; Pohl, R.; Votruba, I.; Sajadi, M.; Kovalenko, S. A.; Ernsting, N. P.; Hocek, M. Synthesis and photophysical properties of 7-deaza-2′-deoxyadenosines bearing bipyridine ligands and their Ru(II)-complexes in position 7. Org. Biomol. Chem. 2008, 6, 2852–2860.10.1039/b805632cSearch in Google Scholar

Waern, J. B.; Dillon, C. T.; Harding, M. M. Organometallic anticancer agents: cellular uptake and cytotoxicity studies on thiol derivatives of the antitumor agent molybdocene dichloride. J. Med. Chem. 2005, 48, 2093–2099.10.1021/jm049585oSearch in Google Scholar

Walsh, J. L.; McCrackin, R.; McPhail, A. T. Preparation and X-ray crystal structure study of a polypyridyl ruthenium(II) complex containing a dehydrodithizone ligand. Polyhedron1998, 17, 3221–3226.10.1016/S0277-5387(98)00095-3Search in Google Scholar

Wang, Q.; Yu, L. Conjugated polymers containing mixed-ligand ruthenium(II) complexes. Synthesis, characterization, and investigation of photoconductive properties. J. Am. Chem. Soc. 2000, 122, 11806–11811.10.1021/ja003140hSearch in Google Scholar

Wang, F.; Chen, H.; Parsons, S.; Oswald, I. D.; Davidson, J. E.; Sadler, P. J. Kinetics of aquation and anation of ruthenium(II) arene anticancer complexes, acidity and X-ray structures of aqua adducts. Chemistry2003, 9, 5810–5820.10.1002/chem.200304724Search in Google Scholar PubMed

Wang, F.; Habtemariam, A.; van der Geer, E. P. L.; Fernandez, R.; Melchart, M.; Deeth, R. J.; Aird, R.; Guichard, S.; Fabbiani, F. P. A.; Lozano-Casal, P.; Oswald, I. D. H.; Jodrell, D. I.; Parsons, S.; Sadler, P. J. Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Proc. Natl. Acad. Sci. 2005a, 102, 18269–18274.10.1073/pnas.0505798102Search in Google Scholar PubMed PubMed Central

Wang, F.; Xu, J.; Habtemariam, A.; Bella, J.; Sadler, P. J. Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate. J. Am Chem. Soc. 2005b, 127, 17734–17743.10.1021/ja053387kSearch in Google Scholar PubMed

Wang, X.; Liu, S.; Weng, L. H.; Jin, G. X. Preparation and structure of mono- and binuclear half-sandwich iridium, ruthenium, and rhodium carbene complexes containing 1,2-dichalcogenolao 1,2-dicarba-closo-dodecaboranes. Chemistry2007, 13, 188–195.10.1002/chem.200600854Search in Google Scholar PubMed

Wang, F.; Habtemariam, A.; van der Geer, E. P.; Deeth, R. J.; Gould, R.; Parsons, S.; Sadler, P. J. Synthesis, characterization, and reaction pathways for the formation of a GMP adduct of a cytotoxic thiocyanato ruthenium arene complex. J. Biol. Inorg. Chem. 2009, 14, 1065–1076.10.1007/s00775-009-0549-xSearch in Google Scholar PubMed

Wang, Y.-C.; Qian, C.; Peng, Z.-L.; Hou, X.-J.; Wang, L.-L.; Chao, H.; Ji, L.-N. Dual topoisomerase I and II poisoning by chiral Ru(II) complexes containing 2-thiophenylimidazo[4,5-f][1,10]phenanthroline derivatives. J. Inorg. Biochem. 2014a, 130, 15–27.10.1016/j.jinorgbio.2013.09.015Search in Google Scholar PubMed

Wang, Z.; Qian, H.; Yiu, S.; Sun, J.; Zhu, G. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: a strategy to improve cytotoxicity. J. Inorg. Biochem. 2014b, 131, 47–55.10.1016/j.jinorgbio.2013.10.017Search in Google Scholar PubMed

Wei, H.; Yin, J.; Wang, E. Bis(2,2′-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10] phenanthroline)ruthenium: synthesis and electrochemical and electrochemiluminescence characterization. Anal. Chem. 2008, 80, 5635–5639.10.1021/ac8001462Search in Google Scholar PubMed

Widegren, J. A.; Bennett, M. A.; Finke, R. G. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(η6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation. J. Am. Chem. Soc. 2003, 125, 10301–10310.10.1021/ja021436cSearch in Google Scholar PubMed

Williams, J. P.; Lough, J. A.; Campuzano, I.; Richardson, K.; Sadler, P. J. Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide. Rapid Commun. Mass Spectrom. 2009, 23, 3563–3569.10.1002/rcm.4285Search in Google Scholar PubMed

Wu, A.; Kennedy, D. C.; Patrick, B. O.; James, B. R. Ruthenium(II) sulfoxide-maltolato and -nitroimidazole complexes: synthesis and MTT assay. Inorg. Chem. 2003, 42, 7579–7586.10.1021/ic030119jSearch in Google Scholar PubMed

Wu, D. H.; Wu, C. H.; Li, Y. Z.; Guo, D. D.; Wang, X. M.; Yan, H. Addition of ethynylferrocene to transition-metal complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand – in vitro cooperativity of a ruthenium compound on cellular uptake of an anticancer drug. Dalton Trans. 2009, 285–290.10.1039/B810831ESearch in Google Scholar

Wu, K.; Luo, Q.; Hu, W.; Li, X.; Wang, F.; Xiong, S.; Sadler, P. J. Mechanism of interstrand migration of organoruthenium anticancer complexes within a DNA duplex. Metallomics2012, 4, 139–148.10.1039/c2mt00162dSearch in Google Scholar PubMed

Xu, L.; Zhong, N. J.; Huang, H. L.; Liang, Z. H.; Li, Z. Z.; Liu, Y. J. Synthesis, characterization, cellular uptake, apoptosis, cytotoxicity, DNA-binding, and antioxidant activity studies of ruthenium(II) complexes. Nucleosides Nucleotides Nucleic Acids2012, 31, 575–591.10.1080/15257770.2012.704110Search in Google Scholar PubMed

Yamanari, K.; Ito, R.; Yamamoto, S.; Konno, T.; Fuyuhiro, A.; Fujioka, K.; Arakawa, R. Cyclic tetramers composed of rhodium(III), iridium(III), or ruthenium(II) half-sandwich and 6-purinethiones. Inorg. Chem. 2002, 41, 6824–6830.10.1021/ic020449oSearch in Google Scholar PubMed

Yan, Y. K.; Melchart, M.; Habtemariam, A.; Sadler, P. J. Organometallic chemistry biology and medicine: ruthenium arene anticancer complexes. Chem. Commun. (Camb.) 2005, 4764–4776.10.1039/b508531bSearch in Google Scholar PubMed

Yan, Y. K.; Melchart, M.; Habtemariam, A.; Peacock, A. F.; Sadler, P. J. Catalysis of regioselective reduction of NAD+ by ruthenium(II) arene complexes under biologically relevant conditions. J. Biol. Inorg. Chem. 2006, 11, 483–488.10.1007/s00775-006-0098-5Search in Google Scholar PubMed

Yasuda, H.; Lee, V. Y.; Sekiguchi, A. η(5)-1,2,3-trisilacyclopentadienyl – a ligand for transition metal complexes: rhodium half-sandwich and ruthenium sandwich. J. Am. Chem. Soc. 2009, 131, 9902–9903.10.1021/ja9038664Search in Google Scholar PubMed

Yu, H. J.; Chen, Y.; Yu, L.; Hao, Z. F.; Zhou, L. H. Synthesis, visible light photocleavage, antiproliferative and cellular uptake properties of ruthenium complex [Ru(phen)2(mitatp)]2+. Eur. J. Med. Chem. 2012, 55, 146–154.10.1016/j.ejmech.2012.07.014Search in Google Scholar PubMed

Zhang, W. Z.; Han, Y. F.; Lin, Y. J.; Jin, G. X. Synthesis and characterization of molecular rectangles of half-sandwich p-cymene ruthenium complexes bearing oxamidato ligands. Dalton Trans. 2009, 8426–8431.10.1039/b909357eSearch in Google Scholar PubMed

Zhao, G.; Lin, H. Metal complexes with aromatic N-containing ligands as potential agents in cancer treatment. Curr. Med. Chem. Anticancer Agents2005, 5, 137–147.10.2174/1568011053174873Search in Google Scholar PubMed

Zhao, M.; Yu, Z.; Yan, S.; Li, Y. Ruthenium(II) complex catalysts bearing a pyridyl-supported pyrazolyl-imine ligand for transfer hydrogenation of ketones. J. Organomet. Chem. 2009, 694, 3068–3075.10.1016/j.jorganchem.2009.05.028Search in Google Scholar

Zhou, G.; Harruna, I. I. Synthesis and characterization of bis(2,2′:6′,2″-terpyridine)ruthenium(II)-connected diblock polymers via RAFT polymerization. Macromolecules2005, 38, 4114–4123.10.1021/ma047955cSearch in Google Scholar

Zhou, Q.; Lei, W.; Chen, Y.; Li, C.; Hou, Y.; Zhang, B.; Wang, X. Ruthenium(II)-arene complexes with strong fluorescence: insight into the underlying mechanism. Chemistry2012, 18, 8617–8621.10.1002/chem.201200960Search in Google Scholar PubMed

Zhu, X. J.; Holliday, B. J. Electropolymerization of a ruthenium(II) bis(pyrazolyl)pyridine complex to form a novel Ru-containing conducting metallopolymer. Macromol. Rapid Commun. 2010, 31, 904–909.10.1002/marc.200900902Search in Google Scholar PubMed

Zuccaccia, D.; Bellachioma, G.; Cardaci, G.; Zuccaccia, C.; Macchioni, A. Aggregation tendency and reactivity toward AgX of cationic half-sandwich ruthenium(II) complexes bearing neutral N,O-ligands. Dalton Trans. 2006, 1963–1971.10.1039/b514269eSearch in Google Scholar PubMed

Received: 2015-5-29
Accepted: 2015-9-1
Published Online: 2015-9-29
Published in Print: 2016-6-1

©2016 by De Gruyter

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2015-0008/html
Scroll to top button