Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 11, 2013

Coordination of non-stabilized germylenes, stannylenes, and plumbylenes to transition metals

  • Judith Baumgartner

    Judith Baumgartner studied technical chemistry at Graz University of Technology, Austria, where she also carried out her PhD work (1991–1992) with Prof. Alois Fürstner, working on the use of activated metals in organic synthesis. She continued to work on organometallic chemistry in Graz and in 1998 spent a year as Schrödinger Post-Doctoral Research Fellow in the laboratory of Prof. Peter Vollhardt at the University of California, Berkeley, working on C-H activation employing novel organo-iridium chemistry. After the birth of her third daughter in 2000 she accepted an offer to set up the single crystal diffraction facility at the Institute of Inorganic Chemistry. Her interests are currently centred on polysilanes, tetrylenes, Group 14 derivatives of transition metals in different oxidation states, as well as of lanthanid complexes bearing a metal silyl bond.

    EMAIL logo
    and Christoph Marschner

    Christoph Marschner, a native of Linz, Austria, was born in 1963. He studied technical chemistry at Graz University of Technology, Austria (1983–1988), where he also carried out his PhD work (1989–1992) in synthetic organic chemistry. After his work with Professor Barry M. Trost at Stanford University as a Schrödinger post doctoral research fellow he returned to Graz as an assistant professor at the Institute of Inorganic Chemistry and started independent research on organosilicon chemistry. He spent a year (1998) at the University of California, Berkeley in the group of Professor T. Don Tilley. In 1999 he was awarded the START-prize of the Austrian government for his work on polysilanes. After finishing his habilitation in 2000 he was promoted to tenured associate professor in 2001. His research interests include main group (especially Group 14) and transition metal organometallic chemistry. The main emphasis of his research over the last decade was put on silyl anion and polysilane chemistry.

Abstract

Complexes of transition metals with heavy analogs of carbenes (tetrylenes) as ligands have been studied now for some 40 years. The current review attempts to provide an overview about complexes with non-stabilized (having no π-donating substituents) germylenes, stannylenes, and plumbylenes. Complexes are known for groups 4–11. For groups 6–10 not only examples of monodentate tetrylene ligands, but also of bridging ones are known. While this review covers almost 200 complexes, the field in general has been approached only very selectively and real attempts for systematic studies are very scarce. Although some isolated reports exist which deal with the reactivity of the tetrylene complexes most of the so far published work concentrates on synthesis and characterization.


Corresponding author: Judith Baumgartner, Institut für Chemie, Karl Franzens Universität Graz, Stremayrgasse 16, A-8010 Graz, Austria, e-mail:

About the authors

Judith Baumgartner

Judith Baumgartner studied technical chemistry at Graz University of Technology, Austria, where she also carried out her PhD work (1991–1992) with Prof. Alois Fürstner, working on the use of activated metals in organic synthesis. She continued to work on organometallic chemistry in Graz and in 1998 spent a year as Schrödinger Post-Doctoral Research Fellow in the laboratory of Prof. Peter Vollhardt at the University of California, Berkeley, working on C-H activation employing novel organo-iridium chemistry. After the birth of her third daughter in 2000 she accepted an offer to set up the single crystal diffraction facility at the Institute of Inorganic Chemistry. Her interests are currently centred on polysilanes, tetrylenes, Group 14 derivatives of transition metals in different oxidation states, as well as of lanthanid complexes bearing a metal silyl bond.

Christoph Marschner

Christoph Marschner, a native of Linz, Austria, was born in 1963. He studied technical chemistry at Graz University of Technology, Austria (1983–1988), where he also carried out his PhD work (1989–1992) in synthetic organic chemistry. After his work with Professor Barry M. Trost at Stanford University as a Schrödinger post doctoral research fellow he returned to Graz as an assistant professor at the Institute of Inorganic Chemistry and started independent research on organosilicon chemistry. He spent a year (1998) at the University of California, Berkeley in the group of Professor T. Don Tilley. In 1999 he was awarded the START-prize of the Austrian government for his work on polysilanes. After finishing his habilitation in 2000 he was promoted to tenured associate professor in 2001. His research interests include main group (especially Group 14) and transition metal organometallic chemistry. The main emphasis of his research over the last decade was put on silyl anion and polysilane chemistry.

Acknowledgments

Support was provided by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) via project P-25124.

References

Adams, R. D.; Cotton, F. A. New type of fluxional molecule. Bis-μ-dimethylgermyl-dicobalt hexacarbonyl. J. Am. Chem. Soc. 1970, 92, 5003–5004.Search in Google Scholar

Adams, R. D.; Smith, J. L. Rhodium cluster complexes containing bridging phenylgermanium ligands. Inorg. Chem. 2005, 44, 4276–4281.Search in Google Scholar

Adams, R. D.; Trufan, E. Diruthenium–tin complexes from the reaction of Ph2SnH2 with Ru(CO)5 and their reactions with bis(tri-tert-butylphosphine)platinum. Organometallics 2008, 27, 4108–4115.Search in Google Scholar

Adams, R. D.; Trufan, E. Platinum–germanium compounds from the reactions of (COD)PtMe2 (COD=1,5-cyclooctadiene) with HGePh3. Inorg. Chem. 2009, 48, 6124–6129.Search in Google Scholar

Adams, R. D.; Trufan, E. Rhodium–germanium carbonyl complexes. Inorg. Chem. 2010a, 49, 3029–3034.Search in Google Scholar

Adams, R. D.; Trufan, E. Iridium–germanium and –tin carbonyl complexes. Organometallics 2010b, 29, 4346–4353.10.1021/om1006424Search in Google Scholar

Adams, R. D.; Brice, M. D.; Cotton, F. A. Structural and dynamical properties of μ-dimethylgermyl-μ-carbonyl-dicyclopentadienyldicarbonyldiiron. Inorg. Chem. 1974, 13, 1080–1085.Search in Google Scholar

Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. High nuclearity ruthenium–tin clusters from the reactions of triphenylstannane with pentaruthenium carbonyl carbido cluster complexes. Inorg. Chem. 2002a, 41, 5593–5601.Search in Google Scholar

Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. Multiple reactions of triphenylstannane with Ru5(CO)12(C6H6)(μ5-C) yield bimetallic clusters with unusually large numbers of tin ligands. Inorg. Chem. 2002b, 41, 2302–2303.Search in Google Scholar

Adams, R. D.; Captain, B.; Fu, W. Germanium-rich pentaruthenium carbonyl clusters including Ru5(CO)11(μ-GePh2)45-C) and its reactions with hydrogen. Inorg. Chem. 2003a, 42, 1328–1333.Search in Google Scholar

Adams, R. D.; Captain, B.; Fu, W. Facile introduction of bridging MPh2 groups (M–Ge, Sn, Pb) into platinum–pentaruthenium and hexaruthenium carbido carbonyl cluster complexes. J. Organomet. Chem. 2003b, 671, 158–165.Search in Google Scholar

Adams, R. D.; Captain, B.; Smith, J. L.; Hall, M. B.; Beddie, C. L.; Webster, C. E. Superloading of tin ligands into rhodium and iridium carbonyl cluster complexes. Inorg. Chem. 2004, 43, 7576–7578.Search in Google Scholar

Adams, R. D.; Captain, B.; Johansson, M.; Smith, J. L. New rhenium–tin cluster adds palladium phosphine groups across Re–Sn bonds. J. Am. Chem. Soc. 2005a, 127, 488–489.Search in Google Scholar

Adams, R. D.; Captain, B.; Smith, J. L. High-nuclearity iridium carbonyl clusters containing phenylgermyl ligands: synthesis, structures, and reactivity. Inorg. Chem. 2005b, 44, 1413–1420.Search in Google Scholar

Adams, R. D.; Captain, B.; Hollandsworth, C. B.; Johansson, M.; Smith, J. L. Synthesis and structures of oxo-bridged distannyl- and digermyldirhenium complexes. Organometallics 2006a, 25, 3848–3855.10.1021/om060375eSearch in Google Scholar

Adams, R. D.; Captain, B.; Zhu, L. A new tris(diphenylstannylene)triosmium carbonyl cluster complex and its reactions with Pt(PBut3)2 and Pt(PPh3)4. Organometallics 2006b, 25, 2049–2054.10.1021/om060002dSearch in Google Scholar

Adams, R. D.; Boswell, E. M.; Captain, B.; Patel, M. A. Multiple additions of phenylgermanium ligands to tetraruthenium and tetraosmium carbonyl cluster complexes. Inorg. Chem. 2006c, 46, 533–540.Search in Google Scholar

Adams, R. D.; Captain, B.; Trufan, E. Ruthenium carbonyl cluster complexes with phenylgermyl ligands from the reactions of Ph3GeH with Ru(CO)5 and Ru3(CO)12. J. Cluster Sci. 2007a, 18, 642–659.Search in Google Scholar

Adams, R. D.; Captain, B.; Hall, M. B.; Trufan, E.; Yang, X. Synthesis, characterization, and electronic structures of a series of two-dimensional trimetallic cluster complexes, Ru3(CO)9(μ-SnPh2)3[Pt(PBut3)]x, x=0–3. J. Am. Chem. Soc. 2007b, 129, 12328–12340.Search in Google Scholar

Adams, R. D.; Captain, B.; Trufan, E. Ruthenium–tin complexes from the reaction of HSnPh3 with Ru3(CO)10(NCMe)2 and their reactions with bis(tri-t-butylphosphine)platinum. J. Organomet. Chem. 2008, 693, 3593–3602.Search in Google Scholar

Adams, R. D.; Kan, Y.; Zhang, Q. Transformations of triphenylgermyl ligands in Iridium–ruthenium carbonyl cluster complexes. Organometallics 2011, 30, 328–333.Search in Google Scholar

Adams, R. D.; Kan, Y.; Zhang, Q. Osmium–germanium and osmium–germanium–gold carbonyl cluster complexes: syntheses, structures, bonding, and reactivity. Organometallics 2012a, 31, 8639–8646.10.1021/om301074wSearch in Google Scholar

Adams, R. D.; Fang, F.; Zhang, Q.; Hall, M. B.; Trufan, E. α-Cleavage of phenyl groups from GePh3 ligands in iridium carbonyl cluster complexes. A mechanism and its role in the synthesis of bridging germylene ligands. Organometallics 2012b, 31, 2621–2630.10.1021/om2007002Search in Google Scholar

Agustin, D.; Ehses, M. 119Sn NMR spectroscopic and structural properties of transition metal complexes with terminal stannylene ligands.Compt. Rend. 2009, 12, 1189–1227.Search in Google Scholar

Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. Stabilization of the heavy methylene analogues, GeH2 and SnH2, within the coordination sphere of a transition metal. J. Am. Chem. Soc. 2010, 133, 777–779.Search in Google Scholar

Alvarez, M. A.; Alvarez, M. P.; Carreño, R.; Ruiz, M. A.; Bois, C. Reactivity of the unsaturated manganese dihydrides [Mn2(μ-H)2(CO)6(μ-L2)] [L2=(EtO)2POP(OEt)2, Ph2PCH2PPh2, Me2PCH2PMe2] toward silicon and tin hydrides. J. Organomet. Chem. 2011, 696, 1736–1748.Search in Google Scholar

Anema, S. G.; Audett (nee Christie), J. A.; Mackay, K. M.; Nicholson, B. K. Transition-metal carbonyl derivatives of the germanes. Part 17. Tetracarbonylgermyl(trimethylgermyl)iron, [Fe(CO)4(GeH3)(GeMe3)], its conversion into [{Fe(CO)4(GeH2)}2], and hence to [Co4Fe2Ge2(CO)21](characterised by X-ray crystallography) via [Co4Fe2Ge2(CO)22]. J. Chem. Soc., Dalton Trans. 1988, 2629–2634.10.1039/DT9880002629Search in Google Scholar

Anema, S. G.; Lee, S. K.; Mackay, K. M.; Mcleod, L. C.; Nicholson, B. K.; Service, M. Convenient syntheses of the square-bipyramidal cluster, [Co44-GeMe)2(CO)11] and the formation of [Co44-GeMe)-{µ4-GeCo(CO)4}(CO)11] and [Co44-GeMn(CO)5}-{µ4-GeCo(CO)4}(CO)11]: new Ge2Co4 clusters containing the square-bipyramidal skeleton; and the crystal structure of [Co44-GeMe){µ4-GeCo(CO)4}(CO)11]. J. Chem. Soc., Dalton Trans. 1991a, 1209–1217.Search in Google Scholar

Anema, S. G.; Lee, S. K.; Mackay, K. M.; Nicholson, B. K.; Service, M. A further study of the reaction of methylgermane with [Co2(CO)8], and some interconversions of the products. Crystal and molecular structures of [Co2{µ-Ge(Me)Co(CO)4}(CO)7] and [Co44-GeMe)2{µ-Ge(Me)Co(CO)4}(CO)10], an edge-bridged square-bipyramidal Ge2Co4 species J. Chem. Soc., Dalton Trans. 1991b, 1201–1208.Search in Google Scholar

Anema, S. G.; Lee, S. K.; Mackay, K. M.; Nicholson, B. K. Synthesis of the square-bipyramidal cluster [Co44-SiMe)2(CO)11] by two routes and its reaction with GeMe2H2. The crystal structures of [CO44-SiMe)2(CO)11] and [CO44-SiMe)2 μ-GeMe2(CO)10]. J. Organomet. Chem. 1993, 444, 211–218.Search in Google Scholar

Anema, S. G.; Mackay, K. M.; Nicholson, B. K. Substitution reactions of [Ge2Co4Fe2(CO)21] with methylgermanes, and its decarbonylation. Structures of [Fe24-GeCo2(CO)6(µ-GeMe2)}2(CO)7] and [Fe33-GeCo(CO)2}2(CO)9]. J. Chem. Soc., Dalton Trans. 1996, 3853–3858.10.1039/DT9960003853Search in Google Scholar

Arii, H.; Hashimoto, R.; Mochida, K.; Kawashima, T. Syntheses of di- and trinuclear platinum complexes with multibridged germanium centers derived from unsymmetrical digermanes. Organometallics 2012, 31, 6635–6641.Search in Google Scholar

Arp, H.; Baumgartner, J.; Marschner, C.; Müller, T. A Cyclic disilylated stannylene: synthesis, dimerization, and adduct formation. J. Am. Chem. Soc. 2011, 133, 5632–5635.Search in Google Scholar

Arp, H.; Baumgartner, J.; Marschner, C.; Zark, P.; Müller, T. Coordination chemistry of cyclic disilylated stannylenes and plumbylenes to group 4 metallocenes. J. Am. Chem. Soc. 2012a, 134, 10864–10875.Search in Google Scholar

Arp, H.; Baumgartner, J.; Marschner, C.; Zark, P.; Müller, T. Dispersion energy enforced dimerization of a cyclic disilylated plumbylene. J. Am. Chem. Soc. 2012b, 134, 6409–6415.Search in Google Scholar

Arp, H.; Marschner, C.; Baumgartner, J.; Zark, P.; Müller, T. Coordination chemistry of disilylated stannylenes with group 10 d10 transition metals: silastannene vs stannylene complexation. J. Am. Chem. Soc. 2013, 135, 7949–7959.Search in Google Scholar

Asay, M.; Jones, C.; Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 2011, 111, 354–396.Search in Google Scholar

Audett (nee Christie), J. A.; Mackay, K. M. Transition-metal carbonyl derivatives of the germanes. Part 18. Tetracarbonylbis(permethylgermyl)iron compounds [Fe(CO)4(GeMe3-xHx)(GeMe3-yHy)] for x,y= 0–3. J. Chem. Soc., Dalton Trans. 1988, 2635–2643.10.1039/DT9880002635Search in Google Scholar

Bares, J.; Richard, P.; Meunier, P.; Pirio, N.; Padelkova, Z.; Cernosek, Z.; Cisarova, I.; Ruzicka, A. Reactions of C,N-chelated tin(II) and lead(II) compounds with zirconocene dichloride derivatives. Organometallics 2009, 28, 3105–3108.Search in Google Scholar

Bartlett, R. A.; Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J. M.; Power, P. P. A closed paramagnetic electron-precise cluster. J. Chem. Soc., Chem. Commun. 1988, 312–313.10.1039/c39880000312Search in Google Scholar

Blom, B.; Stoelzel, M.; Driess, M. New vistas in N-heterocyclic silylene (NHSi) transition-metal coordination chemistry: syntheses, structures and reactivity towards activation of small molecules. Chem. Eur. J. 2013, 19, 40–62.Search in Google Scholar

Boer, F. P.; Flynn, J. J. Crystal structures of multicenter catalysts. Comparison of dichlorobis(2,3,5,6-tetrahaptonorbornadienedicarbonylcobalt)-tin(IV) and diphenylbis(2,3,5,6-tetrahaptonorbornadienedicarbonylcobalt)tin(IV). J. Am. Chem. Soc. 1971, 93, 6495–6503.Search in Google Scholar

Braunschweig, H.; Dörfler, R.; Mager, J.; Radacki, K.; Seeler, F. Structural characterization of the anionic halfsandwich complex [Li(TMEDA)2][Mo(η5-C5H5)(CO)3] and its reactivity towards stannanes and distannanes. J. Organomet. Chem. 2009, 694, 1134–1137.Search in Google Scholar

Braunstein, P.; Charles, C.; Kickelbick, G.; Schubert, U. Palladium-induced rearrangement of a Fe2Sn2 metal core leading to the first Fe–Pd–Sn cluster [(OC)3F–e(μ-SnBun2)(μ-dppm)P–d–(μ-dppm)F–e(CO)3]. Chem. Commun. 1997, 2093–2094.10.1039/a705019dSearch in Google Scholar

Brice, M. D.; Cotton, F. A. Crystal and molecular structure of (di-tert-butylstannylene)pyridinopentacarbonylchromium. J. Am. Chem. Soc. 1973, 95, 4529–4532.Search in Google Scholar

Brooks, E. H.; Elder, M.; Graham, W. A. G.; Hall, D. The preparation and structure of a germanium-bridged iron carbonyl complex, [(CH3)2Ge]3Fe2(CO)6. J. Am. Chem. Soc. 1968, 90, 3587–3588.Search in Google Scholar

Burlakov, V. V.; Polyakov, A. V.; Yanovsky, A. I.; Struchkov, Y. T.; Shur, V. B.; Vol’pin, M. E.; Rosenthal, U.; Görls, H. Novel acetylene complexes of titanocene and permethyltitanocene without additional ligands. Synthesis spectral characteristics and X-ray diffraction study. J. Organomet. Chem. 1994, 476, 197–206.Search in Google Scholar

Burton, N. C.; Cardin, C. J.; Cardin, D. J.; Twamley, B.; Zubavichus, Y. Synthesis and characterization of the first ruthenium-lead clusters, [Ru3(μ-PbR2)(μ-CO)2(CO)9] and [Ru3(μ-PbR2)2(μ-CO)(CO)9]. Single-crystal X-ray structure of [Ru3(μ-PbR2)2(μ-CO)(CO)9]. Organometallics 1995, 14, 5708–5710.Search in Google Scholar

Campbell, C.; Farrugia, L. J. Structure of bis(μ-diethyllead)-bis(tetracarbonyliron). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989, 45, 1817–1818.Search in Google Scholar

Cardin, C. J.; Cardin, D. J.; Parge, H. E.; Power, J. M. Metal cluster expansion by addition of low-valent group 4B reagents: crystal and molecular structure of [Os3SnH2(CO)10{CH(SiMe3)2}2]; a compound with hydrogen bridging osmium and tin. J. Chem. Soc., Chem. Commun. 1984, 609–610.10.1039/c39840000609Search in Google Scholar

Cardin, C. J.; Cardin, D. J.; Power, J. M.; Hursthouse, M. B. Unusual reactivity of [Os3Sn(μ-H)2(CO)10R2] involving the tin atom and the novel bridging hydride: x-ray crystal and molecular structures of [Os3Sn(μ-H)2{μ-RC(Os)(:O)(Sn)}(CO)9R] and [Os3Sn(CO)921-C(CO2Me)CH2C:O(Os)OMe}R2] [R=CH(SiMe3)2]. J. Am. Chem. Soc. 1985, 107, 505–507.Search in Google Scholar

Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J. M.; Power, M. B.; Hursthouse, M. B. Metal cluster expansion by addition of low valent group 14 reagents: III. Reaction of bis[bis(trimethylsilyl)methyl]tin with M3(CO)12 or its derivatives (M=Fe, Ru, or Os): the crystal and molecular structures of M3(μ-SnR2)2(CO)10(R=CH(SiMe3)2; M=Ru or Os). J. Organomet. Chem. 1987, 325, 203–215.10.1016/0022-328X(87)80401-1Search in Google Scholar

Cardin, C. J.; Cardin, D. J.; Convery, M. A.; Dauter, Z.; Fenske, D.; Devereux, M. M.; Power, M. B. New ruthenium–tin clusters with bulky ligands. Crystal and molecular structures of [Ru2(CO)6(μ-SnR2)(μ-Ph2PCH2PPh2)], [Ru3(CO)9(μ-SnR′2)3], [Ru3(CO)9(μ-SnR2)(μ-SnR′2)2] and [Ru3(CO)9(μ-SnR2)2(μ-SnR′2)][R=CH(SiMe3)2, R′=C6H2Pri3-2,4,6]. J. Chem. Soc., Dalton Trans. 1996a, 1133–1144.Search in Google Scholar

Cardin, C. J.; Cardin, D. J.; Convery, M. A.; Devereux, M. M.; Twamley, B.; Silver, J. Synthesis, characterisation, Mössbauer spectra, and structures of some trinuclear iron–tin clusters. J. Chem. Soc., Dalton Trans. 1996b, 1145–1151.Search in Google Scholar

Carreno, R.; Riera, V.; Ruiz, M. A.; Jeannin, Y.; Philoche-Levisalles, M. Reactivity of the unsaturated dihydrides [Mn2(μ-H)2(CO)6(μ-L2)] towards boron, silicon, and tin hydrides [L2=Ph2PCH2PPh2, (EtO)2POP(OEt)2]. X-Ray crystal structures of [Mn2(μ-H)(μ-BH4)(CO)6(μ-Ph2PCH2PPh2)] and [Mn2(μ-SnPh2)2(CO)6{μ-(EtO)2POP(OEt)2}]. J. Chem. Soc., Chem. Commun. 1990, 15–17.10.1039/C39900000015Search in Google Scholar

Castel, A.; Riviere, P.; Satge, J.; Moreau, J. J. E.; Corriu, R. J. P. Reactivity of halogermylenes with various transition-metal complexes. The first germylenes with germanium-transition metal bonds. Organometallics 1983, 2, 1498–1502.Search in Google Scholar

Chipperfield, J. R.; Clark, S.; Webster, D. E.; Yusof, H. Reactivity of Main-Group–transition-metal bonds: IX. The kinetics of iodination of compounds containing two or more tin–transition-metal bonds. J. Organomet. Chem. 1991, 421, 205–213.Search in Google Scholar

Christendat, D.; Wosnick, J. H.; Butler, I. S.; Gilson, D. F. R.; Lebuis, A.-M.; Morin, F. G. Structural and spectroscopic studies of bis(pentacarbonylmanganese)diphenyltin(IV) and bis(pentacarbonylmanganese)diphenyllead(IV). J. Mol. Struct. 2001, 559, 235–243.Search in Google Scholar

Collman, J. P.; Murphy, D. W.; Fleischer, E. B.; Swift, D. Synthesis of linear metallic oligomers. Organotin complexes of tetracarbonylosmium. Inorg. Chem. 1974, 13, 1–6.Search in Google Scholar

Cornwell, A. B.; Harrison, P. P.; Richards, J. A. Derivatives of divalent germanium, tin and lead: XV. Some reactions of dicyclopentadienyltin and bis(methylcyclopentadienyl)tin with metal carbonyl compounds. Co-ordination chemistry of heavy-atom Group IV donors, and the crystal and molecular structure of [(Me3Si)2CH]2SnCr(CO)5. J. Organomet. Chem. 1976, 108, 47–60.Search in Google Scholar

Cotton, J. D.; Davison, P. J.; Goldberg, D. E.; Lappert, M. F.; Thomas, K. M. Co-ordination chemistry of heavy-atom Group IV donors, and the crystal and molecular structure of [(Me3Si)2CH]2SnCr(CO)5. J. Chem. Soc., Chem. Commun. 1974, 893–895.10.1039/c39740000893Search in Google Scholar

Cotton, J. D.; Davidson, P. J.; Lappert, M. F. Subvalent Group 4B metal alkyls and amides. Part II. The chemistry and properties of bis[bis(trimethylsilyl)methyl]tin(II) and its lead analogue. J. Chem. Soc., Dalton Trans. 1976a, 2275–2286.Search in Google Scholar

Cotton, J. D.; Davidson, P. J.; Lappert, M. F.; Donaldson, J. D.; Silvet, J. Subvalent Group 4B metal alkyls and amides. Part III Mössbauer spectroscopy studies of bis[bis(trimethylsilyl)methyl]tin(II) and its derivatives. J. Chem. Soc., Dalton Trans. 1976b, 2286–2290.Search in Google Scholar

Curtis, M. D.; Job, R. C. Halogen-bridged germanium-metal bonds and germanium-bridged metal-metal bonds. J. Am. Chem. Soc. 1972, 94, 2153–2155.Search in Google Scholar

Curtis, M. D.; Butler, W. M.; Scibelli, J. Structure of the reaction product of pentaphenylgermole and diiron enneacarbonyl: μ-(1-(1,2,3,4-tetraphenylbutadienyl)phenylgermylene)octacarbonyldiiron(Fe-Fe). J. Organomet. Chem. 1980, 192, 209–218.Search in Google Scholar

Davidson, P. J.; Lappert, M. F. Stabilisation of metals in a low co-ordinative environment using the bis(trimethylsilyl)methyl ligand; coloured SnII and PbII alkyls, M[CH(SiMe3)2]2. J. Chem. Soc., Chem. Commun. 1973, 317a.10.1039/c3973000317aSearch in Google Scholar

Davidson, P. J.; Harris, D. H.; Lappert, M. F. Subvalent Group 4B metal alkyls and amides. Part I. The synthesis and physical properties of kinetically stable bis[bis(trimethysilyl)methyl]-germanium(II), -tin(II), and -lead(II). J. Chem. Soc., Dalton Trans. 1976, 2268–2274.10.1039/dt9760002268Search in Google Scholar

Denninger, U.; Schneider, J. J.; Wilke, G.; Goddard, R.; Krüger, C. Transition metal complexes VII. [(η5-Cp)Ni(PEt3)]2, a dinuclear organometallic complex with an unbridged Ni–Ni bond; structure and heteronuclear complexes thereof. Inorg. Chim. Acta 1993, 213, 129–140.10.1016/S0020-1693(00)83823-2Search in Google Scholar

Díez-González, S., Ed. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools; RSC Catalysis Series; Royal Society of Chemistry: Cambridge, 2011.10.1039/9781849732161Search in Google Scholar

Díez-González, S.; Marion, N.; Nolan, S. P. N-Heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 2009, 109, 3612–3676.Search in Google Scholar

Elder, M. Crystal and molecular structure of μ-carbonyl-bis-μ-diphenylgermanium-bis(tricarbonyliron), [Ge(C6H5)2]2Fe2(CO)7. Inorg. Chem. 1969, 8, 2703–2708.Search in Google Scholar

El-Maradny, A.; Tobita, H.; Ogino, H. Photoreaction of silyliron(II) complex Cp*Fe(CO)2SiMe3 (Cp*=η5-C5Me5) in the presence of p-tolylgermane. Organometallics 1996, 15, 4954–4958.Search in Google Scholar

Fasulo, M. E.; Tilley, T. D. Synthesis and reactivity of cationic ruthenium germylene complexes [Cp*(PiPr3)RuH2(=GeRR′)]+. Chem. Commun. 2012, 48, 7690–7692.Search in Google Scholar

Feldman, J. D.; Peters, J. C.; Tilley, T. D. Activations of silanes with [PhB(CH2PPh2)3]Ir(H)(η3-C8H13). Formation of iridium silylene complexes via the extrusion of silylenes from secondary silanes R2SiH2. Organometallics 2002, 21, 4065–4075.Search in Google Scholar

Fukuda, T.; Hashimoto, H.; Tobita, H. Reactions of a tungsten–germylyne complex with alcohols and arylaldehydes. Chem. Commun. 2013, 49, 4232–4234.Search in Google Scholar

Gerlach, R. F.; Mackay, K. M.; Nicholson, B. K.; Robinson, W. T. Transition-metal carbonyl derivatives of the germanes. Part 13. Preparation, spectroscopic properties, and the crystal and molecular structure of bis[μ-carbonyl-bis(tricarbonylcobaltio)(CoCo)]germanium (4CoGe), [Ge{Co2(CO)7}2]; a new type of group 4–tetracobalt species. J. Chem. Soc., Dalton Trans. 1981, 80–84.10.1039/DT9810000080Search in Google Scholar

Gilmore, C. J.; Woodward, P. Crystal and molecular structure of di-μ-dimethylstannylene-bis(tetracarbonyliron): a metal ring compound. J. Chem. Soc., Dalton Trans. 1972, 1387–1392.10.1039/DT9720001387Search in Google Scholar

Glorius, F., Ed. N-Heterocyclic Carbenes in Transition Metal Catalysis; Topics in organometallic chemistry; Springer: Berlin, 2007.10.1007/978-3-540-36930-1Search in Google Scholar

Harrison, P. G.; King, T. J.; Richards, J. A. Derivatives of divalent germanium, tin, and lead. Part XII. Crystal and molecular structure of di-μ-bis(cyclopentadienyl)stannyl-bis(tetracarbonyliron). J. Chem. Soc., Dalton Trans. 1975, 2097–2100.10.1039/dt9750002097Search in Google Scholar

Hashimoto, H.; Tsubota, T.; Fukuda, T.; Tobita, H. Synthesis and structure of a hydrido(hydrogermylene)tungsten complex and its reactions with nitriles and ketones. Chem. Lett. 2009, 38, 1196–1197.Search in Google Scholar

Hashimoto, H.; Fukuda, T.; Tobita, H. Reactions of a hydrido(hydrogermylene)tungsten complex with some heterocumulenes: hydrogermylation and thermal rearrangement. New J. Chem. 2010, 34, 1723–1730.Search in Google Scholar

Hashimoto, H.; Fukuda, T.; Tobita, H.; Ray, M.; Sakaki, S. Formation of a germylyne complex: dehydrogenation of a hydrido(hydrogermylene)tungsten complex with mesityl isocyanate. Angew. Chem., Int. Ed. 2012, 51, 2930–2933.Search in Google Scholar

Hayes, P. G.; Gribble, C. W.; Waterman, R.; Tilley, T. D. A hydrogen-substituted osmium stannylene complex: isomerization to a metallostannylene complex via an unusual α-hydrogen migration from tin to osmium. J. Am. Chem. Soc. 2009a, 131, 4606–4607.Search in Google Scholar

Hayes, P. G.; Waterman, R.; Glaser, P. B.; Tilley, T. D. Synthesis, structure, and reactivity of neutral hydrogen-substituted ruthenium silylene and germylene complexes. Organometallics 2009b, 28, 5082–5089.10.1021/om900348mSearch in Google Scholar

Hill, R.; Knox, S. A. R. Group IVB-rhodium complexes: new organorhodium anions in synthesis. J. Organomet. Chem. 1975, 84, C31–C32.Search in Google Scholar

Hlina, J.; Baumgartner, J.; Marschner, C.; Zark, P.; Müller, T. Coordination chemistry of disilylated germylenes with group 4 metallocenes. Organometallics 2013, 32, 3300–3308.Search in Google Scholar

Howard, J.; Woodward, P. Crystal and molecular structure of tri-(dimethylgermanio)-tris(tricarbonylruthenium), [Ru(CO)3(GeMe2)]3. J. Chem. Soc., A 1971, 3648–3650.10.1039/J19710003648Search in Google Scholar

Huie, B. T.; Kirtley, S. W.; Knobler, C. B.; Kaesz, H. D. Synthesis, spectroscopic characterization and crystal and molecular structure of μ-(dimethylstannado)-μ-(hydrido) dodecacarbonyltrirhenium. J. Organomet. Chem. 1981, 213, 45–62.Search in Google Scholar

Job, R. C.; Curtis, M. D. Photochemistry of some bis(metal carbonyl) germanes and (metal carbonyl)chlorogermanes. Formation of germanium-bridged metal-metal bonds. Inorg. Chem. 1973, 12, 2514–2519.Search in Google Scholar

Jutzi, P.; Hampel, B.; Stroppel, K.; Krüger, C.; Angermund, K.; Hofmann, P. Cyclopentadienylsubstituierte Germylene und Stannylene als Komplexliganden. Chem. Ber. 1985, 118, 2789–2797.Search in Google Scholar

Jutzi, P.; Hampel, B.; Hursthouse, M. B.; Howes, A. J. Transition metal complexes of cyclopentadienylgermylenes; the X-ray structure of (Me5C5)[(Me3Si)2CH]Ge→W(CO)5. J. Organomet. Chem. 1986, 299, 19–27.10.1016/0022-328X(86)84030-XSearch in Google Scholar

Kawamura, K.; Nakazawa, H.; Miyoshi, K. Reaction of ruthenium complexes having both a phosphite and a Group 14 element ligand with a lewis acid. Organometallics 1999, 18, 4785–4794.Search in Google Scholar

Klett, J.; Klinkhammer, K. W.; Niemeyer, M. Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu–Sn bond. Chem. Eur. J. 1999, 5, 2531–2536.Search in Google Scholar

Klinkhammer, K. W.; Schwarz, W. Bis(hypersilyl)tin and bis(hypersilyl)lead, two electron-rich carbene homologs. Angew. Chem. Int. Ed. Engl. 1995, 34, 1334–1336.Search in Google Scholar

Knox, S. A. R.; Phillips, R. P.; Stone, F. G. A. Hydrocarbon complexes of ruthenium. Part I. Formation of 1,2,3,3a,6a-η-1,4,5,6-tetrahydropentalenyl complexes from organo-silyl- and -germyl-(carbonyl)ruthenium compounds. J. Chem. Soc., Dalton Trans. 1974, 658–661.10.1039/DT9740000658Search in Google Scholar

Krause, J.; Pluta, C.; Pörschke, K.-R.; Goddard, R. A palladium-catalysed stannole synthesis: development and mechanism. J. Chem. Soc., Chem. Commun. 1993, 1254–1256.10.1039/C39930001254Search in Google Scholar

Krause, J.; Haack, K.-J.; Pörschke, K.-R.; Gabor, B.; Goddard, R.; Pluta, C.; Seevogel, K. A Palladium-Catalyzed stannole synthesis. J. Am. Chem. Soc. 1996, 118, 804–821.Search in Google Scholar

Lalov, A. V.; Egorov, M. P.; Nefedov, O. M.; Cherkasov, V. K.; Ermolaev, N. L.; Piskunov, A. V. Generation of the first representatives of the Schrock complexes of heavy carbene analogs. Russ. Chem. Bull. 2005, 54, 807–810.Search in Google Scholar

Lappert, M. F.; Miles, S. J.; Power, P. P.; Carty, A. J.; Taylor, N. J. Co-ordination chemistry of bivalent Group 4B heavy metal donors M[N(SiMe3)2]2(M=Ge or Pb) or Ge[CH(SiMe3)2]2; and the crystal and molecular structure of [Cr(CO)5(Ge{CH(SiMe3)2}2)]. J. Chem. Soc., Chem. Commun. 1977, 458–459.10.1039/c39770000458Search in Google Scholar

Lee, K. E.; Gladysz, J. A. Synthesis and reactivity of functionalized rhenium germyl complexes (η5-C5H5)Re(NO)(PPh3)(GePh2X); dynamic equilibria with germylene complex [(η5-C5H5)Re(NO)(PPh3)(GePh2)]+X. Polyhedron 1988, 7, 2209–2211.Search in Google Scholar

Lee, V. Y.; Sekiguchi, A. In Organometallic Compounds of Low-coordinate Si, Ge, Sn, and Pb: From Phantom Species to Stable Compounds; Wiley: Chichester, West Sussex, U.K, 2010.10.1002/9780470669266Search in Google Scholar

Lee, K. E.; Arif, A. M.; Gladysz, J. A. Synthesis, structure, and reactivity of functionalized germyl complexes of the formula (η5-C5H5)Re(NO)(PPh3)(GePh2X): equilibria involving the germylene complex [(η5-C5H5)Re(NO)(PPh3)(:GePh2)]+ TfO-. Organometallics 1991, 10, 751–760.Search in Google Scholar

Lee, S. K.; Mackay, K. M.; Nicholson, B. K.; Service, M. The reactions of methylgermanes with [μ4-Ge{Co2(CO)7}2]: extending the chain of linked GeCo2 triangles. J. Chem. Soc., Dalton Trans. 1992, 1709–1716.10.1039/DT9920001709Search in Google Scholar

Lei, D.; Hampden-Smith, M. J. 1,1-Dimetallagermacyclopent-3-enes: precursors to transition metal substituted germylenes (germanediyls). J. Chem. Soc., Chem. Commun. 1989, 1211–1213.10.1039/c39890001211Search in Google Scholar

Lei, D.; Hampden-Smith, M. J.; Duesler, E. N.; Huffman, J. C. Synthesis and single-crystal x-ray structural investigation of 1,1-bis(pentacarbonylmanganio)-3,4-dimethylgermacyclopent-3-ene and bis[1-(tetracarbonylferrio)-3,4-dimethylgermacyclopent-3-ene]: the first evidence for a puckered ground-state conformation in germacyclopent-3-enes. Inorg. Chem. 1990, 29, 795–798.Search in Google Scholar

Lei, D.; Hampden-Smith, M. J.; Garvey, J. W.; Huffman, J. C. The chemistry of transition metal–germanium compounds. Part 2. Synthesis, characterization, structure and reactivity of transition-metal carbonyl-substituted germacyclopent-3-enes. J. Chem. Soc., Dalton Trans. 1991, 2449–2457.10.1039/DT9910002449Search in Google Scholar

Leong, W. K.; Einstein, F. W. B.; Pomeroy, R. K. Higher nuclearity clusters containing osmium and tin atoms. Synthesis and structure of [(OC)3Os(SnMe2)]3, Os4(SnMe2)4(CO)14, and Os43-O)2(SnMe2)4(CO)14. Organometallics 1996a, 15, 1582–1588.10.1021/om950670rSearch in Google Scholar

Leong, W. K.; Einstein, F. W. B.; Pomeroy, R. K. Osmium–germanium clusters. Structures of [(OC)4Os(GeMe2)]2, Os2(GeMe2)3(CO)6, Os3(GeMe2)2(CO)11, [(OC)3Os(GeMe2)]3, and Os4(GeMe2)4(CO)12. Organometallics 1996b, 15, 1589–1596.10.1021/om950682cSearch in Google Scholar

Leong, W. K.; Einstein, F. W. B.; Pomeroy, R. K. Bisphenylbis[tetracarbonyl(hydrido)osmio]germane, Ph2Ge[Os(CO)4H]2. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997a, 53, 22–24.Search in Google Scholar

Leong, W. K.; Pomeroy, R. K.; Batchelor, R. J.; Einstein, F. W. B.; Campana, C. F. Synthesis and structure of [Os(CO)4(SnPh2)]6: a compound with an unprecedented 12-membered ring of metal atoms. Organometallics 1997b, 16, 1079–1082.10.1021/om960667nSearch in Google Scholar

Li, C.; Widjaja, E.; Chew, W.; Garland, M. Rhodium tetracarbonyl hydride: the elusive metal carbonyl hydride. Angew. Chem. Int. Ed. 2002, 41, 3785–3789.Search in Google Scholar

Litz, K. E.; Bender, J. E.; Kampf, J. W.; Banaszak Holl, M. M. Transition metal germylene complexes as hydrogenation catalysts: the synthesis of a rare bis(amino)germane. Angew. Chem. Int. Ed. Engl. 1997, 36, 496–498.Search in Google Scholar

Marks, T. J. Dialkylgermylene- and -stannylene-pentacarbonylchromium complexes. J. Am. Chem. Soc. 1971, 93, 7090–7091.Search in Google Scholar

Marks, T. J.; Newman, A. R. Facile and reversible homolysis of iron-germanium, -tin and -lead bonds by Lewis bases. J. Am. Chem. Soc. 1973, 95, 769–773.Search in Google Scholar

Matioszek, D.; Kocsor, T.-G.; Castel, A.; Nemes, G.; Escudie, J.; Saffon, N. Phosphaalkenyl germylenes and their gold, tungsten and molybdenum complexes. Chem. Commun. 2012, 48, 3629–3631.Search in Google Scholar

McIndoe, J. S.; Nicholson, B. K. Facile cleavage of Si–Si or Si–Ge bonds in the reactions of disilanes or germylsilanes with cobalt carbonyl. J. Organomet. Chem. 1999, 577, 181–188.Search in Google Scholar

Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Stable heavier carbene analogues. Chem. Rev. 2009, 109, 3479–3511.Search in Google Scholar

Mobarok, M. H.; McDonald, R.; Ferguson, M. J.; Cowie, M. Germyl- and germylene-bridged Complexes of Rh/Ir and subsequent chemistry of a bridging germylene group. Inorg. Chem. 2012a, 51, 4020–4034.Search in Google Scholar

Mobarok, M. H.; McDonald, R.; Ferguson, M. J.; Cowie, M. Mixed bis(μ-silylene) and (μ-silylene)/(μ-germylene) complexes involving the Rh/Ir metal combination: nature of the Si···Si interactions in the bis(μ-silylene) species. Inorg. Chem. 2012b, 51, 9249–9258.Search in Google Scholar

Mock, S.; Schubert, U. Übergangsmetall-stannyl-komplexe, 9[1]. Substitutions-reaktionen der anionischen Hydrid-komplexe [(π-MeC5H4)(CO)2MnH] und [(π-Aromat)(CO)2CrH]. Chem. Ber. 1993, 126, 2591–2599.Search in Google Scholar

Nagendran, S.; Roesky, H. W. The chemistry of aluminum(I), silicon(II), and germanium(II). Organometallics 2008, 27, 457–492.10.1021/om7007869Search in Google Scholar

Negishi, E.; Cederbaum, F. E.; Takahashi, T. Reaction of zirconocene dichloride with alkyllithiums or alkyl grignard reagents as a convenient method for generating a “zirconocene” equivalant and its use in zirconium-promoted cyclization of alkenes, alkynes, dienes, enynes, and diynes. Tetrahedron Lett. 1986, 27, 2829–2832.Search in Google Scholar

Ogino, H.; Tobita, H. In Advances in Organometallic Chemistry; F. Gordon A. Stone and Robert West, Ed.; Academic Press, 1998; Vol. 42, pp. 223–290.10.1016/S0065-3055(08)60544-4Search in Google Scholar

Párkányi, L.; Pannell, K. H.; Hernandez, C. Organometalloidal derivatives of the transition metals: XVII. The crystal structure of bis(dicarbonyl-η5-cyclopentadienyliron)diphenyltin. J. Organomet. Chem. 1988, 347, 295–298.Search in Google Scholar

Petz, W. Transition-metal complexes with derivatives of divalent silicon, germanium, tin, and lead as ligands. Chem. Rev. 1986, 86, 1019–1047.Search in Google Scholar

Piers, W. E.; Whittal, R. M.; Ferguson, G.; Gallagher, J. F.; Froese, R. D. J.; Stronks, H. J.; Krygsman, P. H. Structure and bonding in bis(stannylene) adducts of zirconocene and (1,1′-dimethyl)zirconocene. Organometallics 1992, 11, 4015–4022.Search in Google Scholar

Pluta, C.; Pörschke, K. R.; Mynott, R.; Betz, P.; Krüger, C. {Bis[bis(trimethylsilyl)methyl]stannio(II)}bis(η2-ethen)nickel(0) und verwandte Verbindungen, Teil I. Chem. Ber. 1991, 124, 1321–1325.Search in Google Scholar

Pluta, C.; Pörschke, K.-R.; Gabor, B.; Mynott, R. {Bis[bis(trimethylsilyl)methyl]stannio(II)}bis(η2-ethen)nickel(0) und verwandte Verbindungen, Teil II. Chem. Ber. 1994, 127, 489–500.Search in Google Scholar

Schager, F.; Seevogel, K.; Pörschke, K.-R.; Kessler, M.; Krüger, C. Reversible water and methanol activation at the Pd=Sn Bond1. J. Am. Chem. Soc. 1996, 118, 13075–13076.Search in Google Scholar

Schneider, J. J.; Hagen, J.; Bläser, D.; Boese, R.; Krüger, C. The reactivity of the unbridged Co–Sn Bond in [(η5-C5H5)(η2-C2H4)Co–Sn{CH[Si(CH3)3]2}2]—the first organometallic complexes with direct Co–Sn–chalcogen bonding (chalcogen=Se, Te). Angew. Chem. Int. Ed. Engl. 1997, 36, 739–741.Search in Google Scholar

Schneider, J. J.; Hagen, J.; Heinemann, O.; Krüger, C.; de Biani, F. F.; Zanello, P. Synthesis, structure, spectroelectrochemical and theoretical investigations of [(η5-Me5Cp)Co(η4-MeC=CMe–CMe=CMe)Sn{CH(SiMe3)2}2] Formation of a cobalt complexed stannacycle via a mixed alkyne-stannylene cycloaddition reaction. Inorg. Chim. Acta 1998, 281, 53–59.Search in Google Scholar

Schneider, J. J.; Czap, N.; Bläser, D.; Boese, R. Metal atom synthesis of (η6-toluene)(η2-ethene)iron(η1-stannandiyls): unusual iron(0) complexes. J. Am. Chem. Soc. 1999a, 121, 1409–1410.Search in Google Scholar

Schneider, J. J.; Czap, N.; Bläser, D.; Boese, R. Synthesis and structure of dinuclear [(2-tert-butyl-4,5,6-trimethylphenyl)2Sn-Co(η2-ethene)(η5-Me5C5)] and its thermal conversion to trinuclear [{(2-tert-butyl-4,5,6-trimethylphenyl)2Sn}2Co(η5-Me5C5)] (Co–Sn2). J. Organomet. Chem. 1999b, 584, 338–343.Search in Google Scholar

Schneider, J. J.; Hagen, J.; Bläser, D.; Boese, R.; de Biani, F. F.; Zanello, P.; Krüger, C. Synthesis, structure, electrochemistry and reactivity of the bis(μ-σ-stannanediyl)dinickel butterfly cluster [{{(SiMe3)2CH}2Sn–Ni(η5-Cp)}2](Ni2–Sn2). Eur. J. Inorg. Chem. 1999c, 1987–1993.Search in Google Scholar

Schneider, J. J.; Czap, N.; Bläser, D.; Boese, R.; Ensling, J.; Gütlich, P.; Janiak, C. Experimental and theoretical investigations on the synthesis, structure, reactivity, and bonding of the stannylene-iron complex bis{{bis(2-tert-butyl-4,5,6-trimethyl-phenyl)}Sn}Fe(η6-toluene). Chem. Eur. J. 2000a, 6, 468–474.Search in Google Scholar

Schneider, J. J.; Hagen, J.; Czap, N.; Krüger, C.; Mason, S. A.; Bau, R.; Ensling, J.; Gütlich, P.; Wrackmeyer, B. Hydroxo hydrido complexes of iron and cobalt (Sn–Fe–Sn, Sn–Co–Sn): probing agostic Sn···H–M interactions in solution and in the solid state. Chem. Eur. J. 2000b, 6, 625–635.Search in Google Scholar

Schneider, J. J.; Hagen, J.; Spickermann, D.; Bläser, D.; Boese, R.; de Biani, F. F.; Laschi, F.; Zanello, P. Synthesis, structure, and spectroelectrochemical investigation of novel ternary Co/Co(Se)/Sn clusters derived from binary cobalt stannanediyl complexes. Chem. Eur. J. 2000c, 6, 237–246.Search in Google Scholar

Sharma, H.; Pannell, K. H. Synthesis and photochemistry of germylsilyl, germylstannyl, and stannylgermyl derivatives of the [(η5-C5H5)Fe(CO)2] (Fp) system: FpSiMe2GeMe2Fp, FpGeMe2SnMe3, and FpSnMe2GeMe3. Organometallics 1994, 13, 4946–4951.10.1021/om00024a042Search in Google Scholar

Sharma, H. K.; Arias-Ugarte, R.; Metta-Magana, A.; Pannell, K. H. Methyl transfer from Fe (and Mo) to Sn: formation of (η5-C5H5)M(CO)nSntBu2Me (M = Fe, n = 2; M = Mo, n = 3) complexes from photochemical irradiation of (η5-C5H5)M(CO)nMe and tBu2SnH2. Chem. Commun. 2010, 46, 4586–4588.Search in Google Scholar

Shinohara, A.; McBee, J.; Tilley, T. D. Germylene and silylene complexes of molybdenum via E–H (E=Ge, Si) Bond activations: steric influences on intramolecular MoH···E interactions. Inorg. Chem. 2009, 48, 8081–8083.Search in Google Scholar

Skripkin, Y. V.; Volkov, O. G.; Pasynskii, A. A.; Porai-Koshits, M. A.; Antsyshkina, A. S.; Dikareva, L. M.; Ostrikova, V. N. Preparation and molecular structure of niobocene derivatives, containing niobium-tin-niobium metal chains. Koord. Khim. 1985, 11, 1136–1143.Search in Google Scholar

Sosinsky, B. A.; Shelly, J.; Shong, R. Reduction of a mixed-metal bimetallic, [Fe(CO)4(SnR2)]2, in Lewis bases. Inorg. Chem. 1981, 20, 1370–1374.Search in Google Scholar

Tanabe, M.; Ishikawa, N.; Hanzawa, M.; Osakada, K. Mono- and dinuclear germapalladacycles obtained via the Ge–Ge bond forming reactions promoted by palladium complexes. Organometallics 2008, 27, 5152–5158.Search in Google Scholar

Tanabe, M.; Ishikawa, N.; Chiba, M.; Ide, T.; Osakada, K.; Tanase, T. Tetrapalladium complex with bridging germylene ligands. Structural change of the planar Pd4Ge3 core. J. Am. Chem. Soc. 2011, 133, 18598–18601.Search in Google Scholar

Tobita, H.; Ishiyama, K.; Kawano, Y.; Inomata, S.; Ogino, H. Synthesis of cationic germyleneiron complexes and X-ray structure of [Cp*(CO)2Fe=GeMe2·DMAP]BPh4·CH3CN (Cp* = C5Me5, DMAP = 4-(dimethylamino)pyridine). Organometallics 1998, 17, 789–794.Search in Google Scholar

Tokitoh, N.; Okazaki, R. Recent topics in the chemistry of heavier congeners of carbenes. Coord. Chem. Rev. 2000, 210, 251–277.Search in Google Scholar

Tokitoh, N.; Manmaru, K.; Okazaki, R. Synthesis and crystal structure of the first base-free diarylgermylene-transition metal mononuclear complexe. Organometallics 1994, 13, 167–171.Search in Google Scholar

Triplett, K.; Curtis, M. D. Tin-bridged metal-metal bonds from the photolysis of bis(metal carbonyl)- and chloro(metal carbonyl)dimethylstannanes. Inorg. Chem. 1976, 15, 431–433.Search in Google Scholar

Usui, Y.; Hosotani, S.; Ogawa, A.; Nanjo, M.; Mochida, K. Successive formation of hydrido(germyl)platinum, germaplatinacycle, and germylene-bridged dinuclear platinum complexes from the reaction of a zerovalent platinum complex with α,ω-dihydrodigermanes. Organometallics 2005, 24, 4337–4339.Search in Google Scholar

Weaver, J.; Woodward, P. Crystal and molecular structure of di-μ-dimethylstannylene-bis(carbonyl-π-cyclopentadienylcobalt): a metal ring compound. J. Chem. Soc., Dalton Trans. 1973, 1060–1064.10.1039/DT9730001060Search in Google Scholar

Weidenbruch, M.; Schlaefke, J.; Schäfer, A.; Peters, K.; von Schnering, H. G.; Marsmann, H. Bis(2,4,6-tri-tert-butylphenyl)stannanediyl: A DiaryIstannylene without donor stabilization. Angew. Chem. Int. Ed. Engl. 1994, 33, 1846–1848.Search in Google Scholar

Weidenbruch, M.; Stilter, A.; Schlaefke, J.; Peters, K.; von Schnering, H. G. Compounds of germanium and tin XIV. Rearrangement of bis(2,4,6-tri-tert-butylphenyl) stannylene: synthesis an structure of a donor-free alkylarylstannylene-tungsten complex. J. Organomet. Chem. 1995a, 501, 67–70.Search in Google Scholar

Weidenbruch, M.; Kilian, H.; Peters, K.; Schnering, H. G. V.; Marsmann, H. Compounds of germanium and tin 16. A tetraaryldistannene with a long tin–tin multiple bond and differing environments at the tin atoms. Chem. Ber. 1995b, 128, 983–985.Search in Google Scholar

Weidenbruch, M.; Stilter, A.; Peters, K.; von Schnering, H. G. Verbindungen des Germainums und Zinns. 17. Alkylarylstannylen-komplexe des Chroms und Molybdäns ohne Donorstabilisierung. Z. Anorg. Allg. Chem. 1996a, 622, 534–538.Search in Google Scholar

Weidenbruch, M.; Stilter, A.; Peters, K.; Schnering, H. G. V. Compounds of Germanium and Tin, 20. Stannylene complexes of Iron and Nickel without donor stabilization. Chem. Ber. 1996b, 129, 1565–1567.Search in Google Scholar

Weidenbruch, M.; Stilter, A.; Saak, W.; Peters, K.; von Schnering, H. G. An octahedral stannylmanganese stannylene complex. J. Organomet. Chem. 1998, 560, 125–129.Search in Google Scholar

Whittal, R. M.; Ferguson, G.; Gallagher, J. F.; Piers, W. E. Synthesis and reactivity of bis(stannylene) adducts of zirconocene and (1,1′-dimethyl) zirconocene. X-ray crystal structure of (C5H4CH3)2Zr{Sn[CH(SiMe3)2]2}2. J. Am. Chem. Soc. 1991, 113, 9867–9868.Search in Google Scholar

Wrackmeyer, B.; Horchler, K.; Zhou, H. Silylmethyl and silylamino groups as ligands in tin(II), tin(IV), lead(II) and lead(IV) compounds–a multinuclear magnetic resonance study. Spectrochim. Acta A Mol. Spectrosc. 1990, 46, 809–816.Search in Google Scholar

Zhu, L.; Yempally, V.; Isrow, D.; Pellechia, P. J.; Captain, B. Selective benzylic C–H activation of solvent toluene and m-xylene by and iron–tin cluster complex: Fe2(µSnBu)2(CO)8. J. Organomet. Chem. 2010, 695, 1–5.Search in Google Scholar

Zhu, B.-L.; Li, Y.; Chen, Y.-F.; Shi, W. Reactions of SnMe2-bridged biscyclopentadienes with molybdenum carbonyl to give compounds containing Mo–Sn–Mo units. Polyhedron 2012, 38, 251–257.Search in Google Scholar

Received: 2013-8-12
Accepted: 2013-9-12
Published Online: 2013-10-11
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2013-0014/html
Scroll to top button