Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 24, 2015

Recent advances in reactors for low-temperature Fischer-Tropsch synthesis: process intensification perspective

  • Samrand Saeidi EMAIL logo , Maryam Khoshtinat Nikoo , Azadeh Mirvakili , Samaneh Bahrani , Nor Aishah Saidina Amin and Mohammad Reza Rahimpour

Abstract

The low-temperature Fischer-Tropsch (LTFT) process aims to produce heavy cuts such as wax and diesel. For many years, there have been studies and improvements on the LTFT process to make the existing reactors more efficient. Recent studies have proposed innovative configurations such as monolithic loop and membrane reactors as well as microchannel reactor, which improved the performance of LTFT synthesis. This persuades us to update the existing knowledge about the available reactors. Some fundamental features of the current reactors, which belong to the classes of conventional reactors (fixed-bed reactors and slurry reactors) and innovative reactors, are discussed to assist the selection of the most efficient reactors specifically for heavy-cuts production. Published experimental and theoretical works with respect to developments in reactor technology and significant advances in catalysis (such as using structured packing, foams, and knitted wire as catalyst supports due to their excellent radial mixing properties) of the FT process are analyzed and discussed. Consequently, it is shown that the LTFT innovative reactors have higher CO conversions and selectivity of desired heavy cuts. Furthermore, the place of innovative reactors among conventional reactors in terms of effective process parameters on the product distribution has been estimated.


Corresponding author: Samrand Saeidi, Chemical Reaction Engineering Group/Low Carbon Energy Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor Baharu, Johor, Malaysia, e-mail:

Acknowledgments

Our most sincere gratitude goes to dear Prof. Dr. Mohd Ghazali Mohd Nawawi (Academic Deputy Dean, Faculty of Chemical Engineering, Universiti Teknologi Malaysia) for his fruitful advice during the manuscript preparation and for his kind support in providing an incredible environment in the laboratory.

References

Aasberg-Petersen K, Christensen TS, Dybkjaer I, Sehested J, Østberg M, Coertzen RM. Chapter 4. Synthesis gas production for FT synthesis. In: André S, Mark D, editors. Studies in surface science and catalysis. Elsevier, 2004: 258–405.10.1016/S0167-2991(04)80461-0Search in Google Scholar

Almeida LC, Echave FJ, Sanz O, Centeno MA, Odriozola JA, Montes M. Washcoating of metallic monoliths and microchannel reactors. Stud Surf Sci Catal 2010; 175: 25–33.10.1016/S0167-2991(10)75004-7Search in Google Scholar

Almeida LC, Echave FJ, Sanz O, Centeno MA, Arzamendi G, Gandía LM. Fischer-Tropsch synthesis in microchannels. Chem Eng J 2011; 167: 536–544.10.1016/j.cej.2010.09.091Search in Google Scholar

Anderson M, Wang H, Lin YS. Inorganic membranes for carbon dioxide and nitrogen separation 2012; 28: 101–122.10.1515/revce-2012-0001Search in Google Scholar

Bartholomew CH. Chapter 5. Recent developments in Fischer-Tropsch catalysis. In: Guczi L, editor. Studies in Surface Science and Catalysis. Elsevier, 1991: 158–224.10.1016/S0167-2991(08)60947-7Search in Google Scholar

Battista J, Böhm U. Mass transfer in trickle-bed reactors with structured packing. Chem Eng Technol 2003; 26: 1061–1067.10.1002/ceat.200301739Search in Google Scholar

Behrens M, Saraber P, Jansen H, Olujic Z. Performance characteristics of a monolith-like structured packing. Chem Biochem Eng Q 2001; 15: 49–57.Search in Google Scholar

Bradford MCJ, Te M, Pollack A. Monolith loop catalytic membrane reactor for Fischer-Tropsch synthesis. Appl Catal A 2005; 283: 39–46.10.1016/j.apcata.2004.12.032Search in Google Scholar

Bragg L. Goodloe column packing. A knit packing material for vapor-liquid contacting operations. Ind Eng Chem 1957; 49: 1062–1066.10.1021/ie50571a018Search in Google Scholar

Brunner KM, Duncan JC, Harrison LD, Pratt KE, Peguin RPS, Bartholomew CH, Hecker WC. Trickle fixed-bed recycle reactor model for the Fischer-Tropsch synthesis. Int J Chem Reactor Eng 2012; 10: 1–21.10.1515/1542-6580.2840Search in Google Scholar

Budzianowski WM. Negative net CO2 emissions from oxy-decarbonization of biogas to H2. Int J Chem Reactor Eng 2010a; 8: 1–32.10.2202/1542-6580.2455Search in Google Scholar

Budzianowski WM. An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane. Int J Hydrogen Energy 2010b; 35: 7454–7469.10.1016/j.ijhydene.2010.04.178Search in Google Scholar

Budzianowski WM. Experimental and numerical study of recuperative heat recirculation. Heat Transfer Eng 2011; 33: 712–721.10.1080/01457632.2011.635985Search in Google Scholar

Budzianowski WM, Miller R. Superadiabatic lean catalytic combustion in a high-pressure reactor. Int J Chem Reactor Eng 2009; 7: 1–33.Search in Google Scholar

Bukur DB, Mukesh D, Patel SA. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 1990; 29: 194–204.10.1021/ie00098a008Search in Google Scholar

Cao C, Wang Y, Jones SB, Hu J, Li XS, Elliot D, Jones S, Stevens D. Microchannel catalytic processes for converting biomass-derived syngas to transportation fuels. ACS Symp Ser 2005; 914: 273–284.10.1021/bk-2005-0914.ch017Search in Google Scholar

Cao C, Palo DR, Tonkovich ALY, Wang Y. Catalyst screening and kinetic studies using microchannel reactors. Catal Today 2007; 125: 29–33.10.1016/j.cattod.2007.03.058Search in Google Scholar

Cao C, Hu J, Li S, Wilcox W, Wang Y. Intensified Fischer-Tropsch synthesis process with microchannel catalytic reactors. Catal Today 2009; 140: 149–156.10.1016/j.cattod.2008.10.016Search in Google Scholar

Chambrey S, Fongarland P, Karaca H, Piché S, Griboval-Constant A, Schweich D. Fischer-Tropsch synthesis in milli-fixed bed reactor: comparison with centimetric fixed bed and slurry stirred tank reactors. Catal Today 2011; 171: 201–206.10.1016/j.cattod.2011.04.046Search in Google Scholar

Chin Yh, Hu J, Cao C, Gao Y, Wang Y. Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor. Catal Today 2005; 110: 47–52.10.1016/j.cattod.2005.09.007Search in Google Scholar

Commenge JM, Falk L, Corriou JP, Matlosz M. Analysis of microstructured reactor characteristics for process miniaturization and intensification. Chem Eng Technol 2005; 28: 446–458.10.1002/ceat.200500017Search in Google Scholar

Cruz S, Sanz O, Poyato R, Laguna OH, Echave FJ, Almeida LC, Centeno MA, Arzamendi G, Gandia LM, Souza-Aguiar EF, Montes M, Odriozola JA. Design and testing of a microchannel reactor for the PROX reaction. Chem Eng J 2011; 167: 634–642.10.1016/j.cej.2010.08.088Search in Google Scholar

Dancuart LP, Steynberg AP. Fischer-Tropsch based GTL technology: a new process? In: Davis BH, Occelli ML, editors. Studies in surface science and catalysis. Elsevier, 2007: 379–399.10.1016/S0167-2991(07)80490-3Search in Google Scholar

Dancuart LP, de Haan R, de Klerk A. Chapter 6. Processing of primary Fischer-Tropsch products. In: André S, Mark D, editors. Studies in surface science and catalysis. Elsevier, 2004: 482–532.10.1016/S0167-2991(04)80463-4Search in Google Scholar

Davis BH. Fischer-Tropsch synthesis: overview of reactor development and future potentialities. Top Catal 2005; 32: 143–168.10.1007/s11244-005-2886-5Search in Google Scholar

De Deugd RM, Kapteijn F, Moulijn JA. Trends in Fischer-Tropsch reactor technology – opportunities for structured reactors. Top Catal 2003a; 26: 29–39.10.1023/B:TOCA.0000012985.60691.67Search in Google Scholar

De Deugd RM, Chougule RB, Kreutzer MT, Meeuse FM, Grievink J, Kapteijn F, Grievinkb J, Kapteijna F, Moulijna JA. Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? Chem Eng Sci 2003b; 58: 583–591.10.1016/S0009-2509(02)00583-3Search in Google Scholar

De Mas N, Günther A, Kraus T, Schmidt MA, Jensen KF. Scaled-out multilayer gas-liquid microreactor with integrated velocimetry sensors. Ind Eng Chem Res 2005; 44: 8997–9013.10.1021/ie050472sSearch in Google Scholar

De Swart JWA, Krishna R. Simulation of the transient and steady state behaviour of a bubble column slurry reactor for Fischer-Tropsch synthesis. Chem Eng Process 2002; 41: 35–47.10.1016/S0255-2701(00)00159-8Search in Google Scholar

De Swart JWA, Van Vliet R, Krishna R. Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column. Chem Eng Sci 1996; 51: 4619–4629.10.1016/0009-2509(96)00265-5Search in Google Scholar

Deckwer WD, Louisi Y, Zaidi A, Ralek M. Hydrodynamic properties of the Fischer-Tropsch slurry process. Ind Eng Chem Process Des Dev 1980; 19: 699–708.10.1021/i260076a032Search in Google Scholar

Deckwer WD, Serpemen Y, Ralek M, Schmidt B. Modeling the Fischer-Tropsch synthesis in the slurry phase. Ind Eng Chem Process Des Dev 1982; 2: 231–241.10.1021/i200017a006Search in Google Scholar

Dorner RW, Hardy DR, Williams FW, Willauer HD. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst’s active phase. Appl Catal A 2010; 373: 112–121.10.1016/j.apcata.2009.11.005Search in Google Scholar

Dry ME. Catalytic aspects of industrial Fischer-Tropsch synthesis. J Mol Catal 1982; 17: 133–144.10.1016/0304-5102(82)85025-6Search in Google Scholar

Dry ME. Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 1996; 138: 319–344.10.1016/0926-860X(95)00306-1Search in Google Scholar

Dry ME. The Fischer-Tropsch process: 1950–2000. Catal Today 2002; 71: 227–241.10.1016/S0920-5861(01)00453-9Search in Google Scholar

Dry ME. The Fischere Tropsch (FT) Synthesis Processes: Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2008.Search in Google Scholar

Dry ME, Steynberg AP. Chapter 5. Commercial FT process applications. In: André S, Mark D, editors. Studies in surface science and catalysis. Elsevier, 2004: 406–481.10.1016/S0167-2991(04)80462-2Search in Google Scholar

Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis. J Catal 1969; 15: 190–199.10.1016/0021-9517(69)90023-2Search in Google Scholar

Edouard D, Lacroix M, Pham C, Mbodji M, Pham-Huu C. Experimental measurements and multiphase flow models in solid SiC foam beds. AIChE J 2008; 54: 2823–2832.10.1002/aic.11594Search in Google Scholar

Elbashir N, Bao B, El-Halwagi M. An approach to the design of advanced Fischer-Tropsch reactor for operation in near-critical and supercritical phase media. In: Advances in Gas Processing: Proceedings of the 1st Annual Symposium on Gas Processing Symposium, 2009; 423–433.10.1016/B978-0-444-53292-3.50051-1Search in Google Scholar

Euzen J, Krishna R, Gauthier T. Stratégie d’extrapolation vers un réacteur industriel de synthèse Fischer-Tropsch en colonne à bulles avec catalyseur en suspension. OGST-Rev IFP 2000; 55: 359–393.Search in Google Scholar

Farias FEM, Rabelo Neto RC, Baldanza MAS, Schmal M, Fernandes F AN. Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in Fischer-Tropsch synthesis. Braz J Chem Eng 2011; 28: 495–504.10.1590/S0104-66322011000300015Search in Google Scholar

Fernandes FAN. Polymerization kinetics of Fischer-Tropsch reaction on iron based catalysts and product grade optimization. Chem Eng Technol 2005; 28: 930–938.10.1002/ceat.200500036Search in Google Scholar

Freitez A, Pabst K, Kraushaar-Czarnetzki B, Schaub G. Single-stage Fischer-Tropsch synthesis and hydroprocessing: the hydroprocessing performance of Ni/ZSM-5/γ-Al2O3 under Fischer-Tropsch conditions. Ind Eng Chem Res 2011; 50: 13732–13741.10.1021/ie201913sSearch in Google Scholar

Georgios DS, Alexander NM, Guido SJS, Andrzej S. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Rev Chem Eng 2014; 30: 233–260.Search in Google Scholar

Ghasemi S, Sohrabi M, Rahmani M. A comparison between two kinds of hydrodynamic models in bubble column slurry reactor during Fischer-Tropsch synthesis: single-bubble class and two-bubble class. Chem Eng Res Des 2009; 87: 1582–1588.10.1016/j.cherd.2009.04.015Search in Google Scholar

Giani L, Groppi G, Tronconi E. Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind Eng Chem Res 2005; 44: 4993–5002.10.1021/ie0490886Search in Google Scholar

Grosse J, Kind M. Hydrodynamics of ceramic sponges in countercurrent flow. Ind Eng Chem Res 2011; 50: 4631–4640.10.1021/ie101514wSearch in Google Scholar

Guettel R, Turek T. Comparison of different reactor types for low temperature Fischer-Tropsch synthesis: a simulation study. Chem Eng Sci 2009; 64: 955–964.10.1016/j.ces.2008.10.059Search in Google Scholar

Guettel R, Kunz U, Turek T. Reactors for Fischer-Tropsch synthesis. Chem Eng Technol 2008; 31: 746–754.10.1002/ceat.200800023Search in Google Scholar

Hashim SM, Mohamed AR, Bhatia S. Catalytic inorganic membrane reactors: present research and future prospects. Rev Chem Eng 2011; 27: 157–178.10.1515/REVCE.2011.005Search in Google Scholar

Hu YC. Hydrocarbon process. USA, osti.gov, 1983.Search in Google Scholar

Iliuta I, Larachi F, Anfray J, Dromard N, Schweich D. Multicomponent multicompartment model for Fischer-Tropsch SCBR. AIChE J 2007; 53: 2062–2083.10.1002/aic.11242Search in Google Scholar

Jachuck R. Process intensification for responsive processing. Chem Eng Res Des 2002; 80: 233–238.10.1205/026387602753581980Search in Google Scholar

Jarosch KT, Tonkovich AL, Perry ST, Kuhlmann D, Wang Y. Microchannel reactors for intensifying gas-to-liquid technology. In: Microreactor Technology and Process Intensification. ACS Symp Ser 2005; 914: 258–272.10.1021/bk-2005-0914.ch016Search in Google Scholar

Jensen KF. Microchemical systems: status, challenges, and opportunities. AIChE J. 1999; 45: 2051–2054.10.1002/aic.690451003Search in Google Scholar

Jess A, Kern C. Modeling of multi-tubular reactors for Fischer-Tropsch synthesis. Chem Eng Technol 2009; 32: 1164–1175.10.1002/ceat.200900131Search in Google Scholar

Jin Y, Wang TF, Wang JF, Zhang TW. An internal for multiphase reactors to improve the hydrodynamic and transfer behaviors. CN Patent 1,199,722C, 2003.Search in Google Scholar

Jothimurugesan K, Goodwin JJG, Gangwal SK, Spivey JJ. Development of Fe Fischer-Tropsch catalysts for slurry bubble column reactors. Catal Today 2000; 58: 335–344.10.1016/S0920-5861(00)00266-2Search in Google Scholar

Kashid MN, Kiwi-Minsker L. Microstructured reactors for multiphase reactions: state of the art. Ind Eng Chem Res 2009; 48: 6465–6485.10.1021/ie8017912Search in Google Scholar

Kim JS, Lee S, Lee SB, Choi MJ, Lee KW. Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons. Catal Today 2006; 115: 228–234.10.1016/j.cattod.2006.02.038Search in Google Scholar

Kiwi-Minsker L, Renken A. Microstructured reactors for catalytic reactions. Catal Today 2005; 110: 2–14.10.1016/j.cattod.2005.09.011Search in Google Scholar

Knobloch C, Güttel R, Turek T. Holdup and pressure drop in micro packed-bed reactors for Fischer-Tropsch synthesis. Chem Ing Tech 2013; 85: 455–460.10.1002/cite.201200202Search in Google Scholar

Krishna R, Sie ST. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 2000; 64: 73–105.10.1016/S0378-3820(99)00128-9Search in Google Scholar

Krishna R, van Baten JM. A strategy for scaling up the Fischer-Tropsch bubble column slurry reactor. Top Catal 2003; 26: 21–28.10.1023/B:TOCA.0000012984.86721.bcSearch in Google Scholar

Ledoux M, Pham-Huu C. Silicon carbide: a novel catalyst support for heterogeneous catalysis. CATTECH 2001; 5: 226–246.10.1023/A:1014092930183Search in Google Scholar

Lee TS, Chung JN. Mathematical modeling and numerical simulation of a Fischer-Tropsch packed bed reactor and its thermal management for liquid hydrocarbon fuel production using biomass syngas. Energy Fuel 2012; 26: 1363–1379.10.1021/ef201667aSearch in Google Scholar

Lee JF, Chern WS, Lee MD, Dong TY. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. Can J Chem Eng 1992; 70: 511–515.10.1002/cjce.5450700314Search in Google Scholar

Letzel H, Schouten J, Van den Bleek C, Krishna R. Influence of elevated pressure on the stability of bubbly flows. Chem Eng Sci 1997; 52: 3733–3739.10.1016/S0009-2509(97)00219-4Search in Google Scholar

Leveque J, Rouzineau D, Prevost M, Meyer M. Hydrodynamic behaviour and mass transfer performance of SiC foam. Int J Chem Reactor Eng 2010; 8:1–17.10.2202/1542-6580.2166Search in Google Scholar

LeViness S, Tonkovich A, Jarosch K, Fitzgerald S, Yang B, McDaniel J. Improved Fischer-Tropsch economics enabled by microchannel technology. White paper generated by Velocys, 2011: 1–7.Search in Google Scholar

Li H, Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column. Ind Eng Chem Res 1997; 36: 4688–4694.10.1021/ie9701635Search in Google Scholar

Lozano-Blanco G, Thybaut JW, Surla K, Galtier P, Marin GB. Simulation of a slurry-bubble column reactor for Fischer-Tropsch synthesis using single-event microkinetics. AIChE J 2009; 55: 2159–2170.10.1002/aic.11786Search in Google Scholar

Maiti RN, Sen PK, Nigam KDP. Trickle-bed reactors: liquid distribution and flow texture. Rev Chem Eng 2004; 20: 57–110.10.1515/REVCE.2004.20.1-2.57Search in Google Scholar

Maretto C, Krishna R. Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis. Catal Today 1999; 52: 279–289.10.1016/S0920-5861(99)00082-6Search in Google Scholar

Masuku CM Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH. Variation of residence time with chain length for products in a slurry-phase Fischer-Tropsch reactor. J Catal 2012; 287: 93–101.10.1016/j.jcat.2011.12.005Search in Google Scholar

Mirzaei AA, Shirzadi B, Atashi H, Mansouri M. Modeling and operating conditions optimization of Fischer-Tropsch synthesis in a fixed-bed reactor. J Ind Eng Chem 2012; 18: 1515–1521.10.1016/j.jiec.2012.02.013Search in Google Scholar

Muthukumaran S, Kentish Sandra E, Stevens Geoff W, Ashokkumar M. Application of ultrasound in membrane separation processes: a review. Rev Chem Eng 2006; 22: 155–194.10.1515/REVCE.2006.22.3.155Search in Google Scholar

Myrstad R, Eri S, Pfeifer P, Rytter E, Holmen A. Fischer-Tropsch synthesis in a microstructured reactor. Catal Today 2009; 147: S301–S304.10.1016/j.cattod.2009.07.011Search in Google Scholar

Narataruksa P, Tungkamani S, Pana-Suppamassadu K, Keeratiwintakorn P, Nivitchanyong S, Hunpinyo P, Sukkathanyawatb H, Jiamrittiwonga P, Nopparatc V. Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer. J Nat Gas Chem 2012; 21: 435–444.10.1016/S1003-9953(11)60388-5Search in Google Scholar

Nikoo MK, Amin NAS. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 2011; 92: 678–691.10.1016/j.fuproc.2010.11.027Search in Google Scholar

Ning W, Koizumi N, Yamada M. Researching Fe catalyst suitable for CO2-containing syngas for Fischer-Tropsch synthesis. Energy Fuel 2009; 23: 4696–4700.10.1021/ef900428tSearch in Google Scholar

Oukaci R, Singleton AH, Goodwin JJG. Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors. Appl Catal A 1999; 186: 129–144.10.1016/S0926-860X(99)00169-6Search in Google Scholar

Pangarkar K, Schildhauer TJ, van Ommen JR, Nijenhuis J, Kapteijn F, Moulijn JA. Structured packings for multiphase catalytic reactors. Ind Eng Chem Res 2008; 47: 3720–3751.10.1021/ie800067rSearch in Google Scholar

Pangarkar K, Schildhauer TJ, van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer-Tropsch synthesis. Catal Today 2009; 147: S2–S9.10.1016/j.cattod.2009.07.035Search in Google Scholar

Pangarkar K, Schildhauer TJ, van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with co-current downflow of gas and liquid. Chem Eng Sci 2010; 65: 420–426.10.1016/j.ces.2009.08.018Search in Google Scholar

Paturzo L, Basile A, Drioli E. High temperature membrane reactors and integrated membrane operations. Rev Chem Eng 2002; 18: 511.10.1515/REVCE.2002.18.6.511Search in Google Scholar

Pondini M, Ebert M. Process synthesis and design of low temperature Fischer-Tropsch crude production from biomass derived syngas. Master’s thesis, Chalmers University of Technology, Göteborg, Sweden, 2013.Search in Google Scholar

Prins MJ, Ptasinski KJ, Janssen FJJG. Exergetic optimisation of a production process of Fischer-Tropsch fuels from biomass. Fuel Process Technol 2005; 86: 375–389.10.1016/j.fuproc.2004.05.008Search in Google Scholar

Qian W, Ma Hf, Li T, Ying W, Fang D. Modeling of a slurry bubble column reactor for Fischer-Tropsch synthesis. J Coal Sci Eng (China) 2012; 18: 88–95.10.1007/s12404-012-0115-ySearch in Google Scholar

Rados N, Al-Dahhan MH, Dudukovic MP. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Catal Today 2003; 79–80: 211–218.10.1016/S0920-5861(03)00007-5Search in Google Scholar

Rados N, Al-Dahhan MH, Duduković MP. Dynamic modeling of slurry bubble column reactors. Ind Eng Chem Res 2005; 44: 6086–6094.10.1021/ie040227tSearch in Google Scholar

Rafique M, Chen P, Duduković MP. Computational modeling of gas-liquid flow in bubble columns. Rev Chem Eng 2004; 20: 225–375.10.1515/REVCE.2004.20.3-4.225Search in Google Scholar

Rahimpour MR, Mirvakili A. A novel configuration of decalin and hydrogen loop in optimized thermally coupled reactors in GTL technology via differential evolution method. J Ind Eng Chem 2013; 19: 508–522.10.1016/j.jiec.2012.09.006Search in Google Scholar

Rahimpour MR, Mirvakili A, Paymooni K. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology. Energy 2011a; 36: 1223–1235.10.1016/j.energy.2010.11.023Search in Google Scholar

Rahimpour MR, Mirvakili A, Paymooni K, Moghtaderi B. A comparative study between a fluidized-bed and a fixed-bed water perm-selective membrane reactor with in situ H2O removal for Fischer-Tropsch synthesis of GTL technology. J Nat Gas Sci Eng. 2011b; 3: 484–495.10.1016/j.jngse.2011.05.003Search in Google Scholar

Rao VUS, Stiegel GJ, Cinquegrane GJ, Srivastava RD. Iron-based catalysts for slurry-phase Fischer-Tropsch process: technology review. Fuel Process Technol 1992; 30: 83–107.10.1016/0378-3820(92)90077-4Search in Google Scholar

Remans TJ, Jenzer G, Hoek A. Gas-to-liquids: Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008.Search in Google Scholar

Renken A, Kiwi-Minsker L. Chapter 2. Microstructured catalytic reactors. In: Bruce CG, Helmut K, editors. Advances in catalysis. Academic Press, 2010; 53: 47–122.Search in Google Scholar

Richardson JT, Remue D, Hung JK. Properties of ceramic foam catalyst supports: mass and heat transfer. Appl Catal A 2003; 250: 319–329.10.1016/S0926-860X(03)00287-4Search in Google Scholar

Saeidi S, Amin NAS, Rahimpour MR. Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Util 2014a; 5: 66–81.10.1016/j.jcou.2013.12.005Search in Google Scholar

Saeidi S, Talebi Amiri M, Amin NAS, Rahimpour MR. Progress in reactors for high-temperature Fischer-Tropsch process: determination place of intensifier reactor perspective. Int J Chem Reactor Eng 2014b; 12: 1–26.10.1515/ijcre-2014-0045Search in Google Scholar

Sarkari M, Fazlollahi F, Atashi H. Fischer Tropsch synthesis: the promoter effects, operating conditions, and reactor synthesis. Int J Chem Reactor Eng 2012; 10: 1–21.10.1515/1542-6580.2843Search in Google Scholar

Satterfield CN, Huff GA, Stenger HG, Carter JL, Madon RJ. A comparison of Fischer-Tropsch synthesis in a fixed-bed reactor and in a slurry reactor. Ind Eng Chem Fundam 1985; 24: 450–454.10.1021/i100020a009Search in Google Scholar

Schildhauer TJ, Newson E, Wokaun A. Closed cross flow structures – improving the heat transfer in fixed bed reactors by enforcing radial convection. Chem Eng Process 2009; 48: 321–328.10.1016/j.cep.2008.04.009Search in Google Scholar

Schildhauer TJ, Pangarkar K, van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with two-phase co-current downflow. Chem Eng J 2012; 185–186: 250–266.10.1016/j.cej.2011.11.054Search in Google Scholar

Stemmet CP, Jongmans JN, van der Schaaf J, Kuster BFM, Schouten JC. Hydrodynamics of gas-liquid counter-current flow in solid foam packings. Chem Eng Sci 2005; 60: 6422–6429.10.1016/j.ces.2005.03.027Search in Google Scholar

Stemmet CP, Van Der Schaaf J, Kuster BFM, Schouten JC. Solid foam packings for multiphase reactors: modelling of liquid holdup and mass transfer. Chem Eng Res Des 2006; 84: 1134–1141.10.1205/cherd05034Search in Google Scholar

Stemmet CP, Bartelds F, van der Schaaf J, Kuster BFM, Schouten JC. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow. Chem Eng Res Des 2008; 86: 1094–1106.10.1016/j.cherd.2008.04.007Search in Google Scholar

Steynberg AP. Chapter 1. Introduction to Fischer-Tropsch technology. In: André S, Mark D, editors. Studies in surface science and catalysis. Elsevier, 2004: 1–63.10.1016/S0167-2991(04)80458-0Search in Google Scholar

Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 2002; 23: 129–152.10.1016/S0961-9534(02)00037-5Search in Google Scholar

Todic B, Ordomsky V, Nikacevic NM, Khodakov A, Bukur DB. Opportunities for intensification of Fischer-Tropsch synthesis through reduced formation of methane over cobalt catalysts in microreactors. Catal Sci Technol 2015. doi: 10.1039/C4CY01547A.10.1039/C4CY01547ASearch in Google Scholar

Tonkovich AL, Mazanec T, Jorosch K, Fitzgerald S, Yang B, Taha R, Kilanowski D, Lerou J, McDaniel J, Atkinson D, Dritz T. Gas-to-liquids Conversion of Associated Gas Enabled by Microchannel Technology. Oxford Catalyst Group, Velocys, Inc., 2010.Search in Google Scholar

Tonkovich AL, Jarosch K, Fitzgerald S, Yang B, Kilanowski D, McDaniel J, Dritz T. Microchannel Gas-to-liquids for Monetizing Associated and Stranded Gas Reserves. Oxford Catalyst Group, Velocys, Inc., 2011.Search in Google Scholar

Tristantini D, Lögdberg S, Gevert B, Borg Ø, Holmen A. The effect of synthesis gas composition on the Fischer-Tropsch synthesis over Co/γ-Al2O3 and Co-Re/γ-Al2O3 catalysts. Fuel Process Technol 2007; 88: 643–649.10.1016/j.fuproc.2007.01.012Search in Google Scholar

Troshko AA, Zdravistch F. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis. Chem Eng Sci 2009; 64: 892–903.10.1016/j.ces.2008.10.022Search in Google Scholar

Tschentscher R, Nijhuis TA, van der Schaaf J, Kuster BFM, Schouten JC. Gas-liquid mass transfer in rotating solid foam reactors. Chem Eng Sci 2010; 65: 472–479.10.1016/j.ces.2009.05.047Search in Google Scholar

Ullmann A, Gat S, Ludmer Z, Brauner N. Phase separation of partially miscible solvent systems: flow phenomena and heat and mass transfer applications. Rev Chem Eng 2008; 24: 159–262.10.1515/REVCE.2008.24.4-5.159Search in Google Scholar

van Baten JM, Krishna R. Eulerian simulation strategy for scaling up a bubble column slurry reactor for Fischer-Tropsch synthesis. Ind Eng Chem Res 2003; 43: 4483–4493.10.1021/ie0340286Search in Google Scholar

Van der Laan GP, Beenackers AACM, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci 1999; 54: 5013–5019.10.1016/S0009-2509(99)00225-0Search in Google Scholar

Velasco JA, Lopez L, Velásquez M, Boutonnet M, Cabrera S, Järås S. Gas to liquids: a technology for natural gas industrialization in Bolivia. J Nat Gas Sci Eng 2010; 2: 222–228.10.1016/j.jngse.2010.10.001Search in Google Scholar

Visconti CG, Tronconi E, Groppi G, Lietti L, Iovane M, Rossini S, Zennaro R. Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors. Chem Eng J 2011; 171: 1294–1307.10.1016/j.cej.2011.05.014Search in Google Scholar

Von Scala C, Wehrli M, Gaiser G. Heat transfer measurements and simulation of KATAPAK-M® catalyst supports. Chem Eng Sci 1999; 54: 1375–1381.10.1016/S0009-2509(99)00077-9Search in Google Scholar

Wang Y, Vanderwiel DP, Tonkovich AL, Gao Y, Baker EG. Catalyst structure and method of Fischer-Tropsch synthesis. Google Patent, 2002.Search in Google Scholar

Wang YN, Xu YY, Li YW, Zhao YL, Zhang BJ. Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis: reactor model and its applications. Chem Eng Sci 2003; 58: 867–875.10.1016/S0009-2509(02)00618-8Search in Google Scholar

Wang G, Wang YN, Yang J, Xu YY, Bai L, Xiang HW, Li YW. Modeling analysis of the Fischer-Tropsch synthesis in a stirred-tank slurry reactor. Ind Eng Chem Res 2004; 43: 2330–2336.10.1021/ie0308083Search in Google Scholar

Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 2007; 46: 5824–5847.10.1021/ie070330tSearch in Google Scholar

Wenmakers PWAM, van der Schaaf J, Kuster BFM, Schouten JC. Liquid-solid mass transfer for cocurrent gas-liquid upflow through solid foam packings. AIChE J 2010; 56: 2923–2933.10.1002/aic.12204Search in Google Scholar

Woo KJ, Kang SH, Kim SM, Bae JW, Jun KW. Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis: determination of optimum condition. Fuel Process Technol 2010; 91: 434–439.10.1016/j.fuproc.2009.04.021Search in Google Scholar

Wood DA, Nwaoha C, Towler BF. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng 2012; 9: 196–208.10.1016/j.jngse.2012.07.001Search in Google Scholar

Yakhnin V, Menzinger M. High-temperature transients in catalytic fixed-bed reactors. Rev Chem Eng 2004; 20: 175–224.10.1515/REVCE.2004.20.3-4.175Search in Google Scholar

Yates IC, Satterfield CN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuel 1991; 5: 168–173.10.1021/ef00025a029Search in Google Scholar

Zeng L, Luo S, Sridhar D, Fan LS. Chemical looping processes – particle characterization, ionic diffusion-reaction mechanism and reactor engineering. Rev Chem Eng 2012; 28: 1–42.10.1515/revce-2011-0010Search in Google Scholar

Received: 2014-9-19
Accepted: 2015-2-3
Published Online: 2015-4-24
Published in Print: 2015-6-1

©2015 by De Gruyter

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2014-0042/html
Scroll to top button