Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter (O) May 14, 2024

Phytoremediation of radium contaminated soils: recent advances and prospects

  • Jianlong Wang ORCID logo EMAIL logo and Can Chen
From the journal Radiochimica Acta

Abstract

Radioactive radium (Ra) mainly comes from the mining and milling of uranium and other metal or non-metal mines, phosphate production and fertilizer use, production of oil and gas, coal combustion, wastewater treatment, and various wastes from the above activities, which is ubiquitous in the environment. Phytoremediation is a green and cheap remediation technology for metal/radionuclide-contaminated sites. Radium is often of particular interest and there are many literatures on parameters of Ra concentration in plants and transfer factors from soil to plant from a radiological impact assessment point of view. However, review articles on phytoremediation of Ra-polluted soil are relatively few. This review focused on radium-polluted soil phytoremediation, involving two main strategies of phytoextraction and phytostabilization, which covered the potential (hyper)accumulators for Ra, characteristics of Ra uptake from soil by plants, influencing factors, and phytostabilization application. In future research works, more attention should be paid to the deep insights and mechanism researches of Ra uptake/immobilization by plants. This review will deepen the understanding of the relationship of radium-soil-plants, and to enhance the potential application of phytoremediation as an alternative treatment technology for remediation of Ra-polluted soil site.


Corresponding author: Jianlong Wang, Laboratory of Environmental Technology, INET, Tsinghua University, Energy Science Building, Beijing 100084, P.R. China; and Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, P.R. China, E-mail:

Funding source: LingChuang Research Project of China National Nuclear Corporation

Award Identifier / Grant number: Unassigned

Funding source: National Key Research and Development Program of China

Award Identifier / Grant number: 2020YFC1806603

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The research was supported by National Key Research and Development Program of China (2020YFC1806603) and the LingChuang Research Project of China National Nuclear Corporation.

  5. Data availability: Not applicable.

References

1. Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press, Boca Raton, FL, 2011.10.1201/b10158Search in Google Scholar

2. Guadalupe Pinna-Hernandez, M., Salas, A., Rodriguez-Ruano, I., Guillen, J., Baeza, A., Javier Martinez-Rodriguez, F., Casas Lopez, J. L. Reduction of natural radioactivity in groundwater with different salinity through adsorption of uranium and radium in filter materials. Environ. Sci. Pollut. Res. 2023, 30, 48988; https://doi.org/10.1007/s11356-023-25638-w.Search in Google Scholar PubMed

3. Burnett, W. C., Peterson, R., Moore, W. S., de Oliveira, J. Radon and radium isotopes as tracers of submarine groundwater discharge – results from the Ubatuba Brazil SGD assessment intercomparison. Estuar. Coast. Shelf Sci. 2008, 76, 501–511; https://doi.org/10.1016/j.ecss.2007.07.027.Search in Google Scholar

4. Xu, B., Li, S., Burnett, W. C., Zhao, S., Santos, I. R., Lian, E., Chen, X., Yu, Z. Radium-226 in the global ocean as a tracer of thermohaline circulation: synthesizing half a century of observations. Earth Sci. Rev. 2022, 226, 103956; https://doi.org/10.1016/j.earscirev.2022.103956.Search in Google Scholar

5. Nilsson, S., Franzen, L., Parker, C., Tyrrell, C., Blom, R., Tennvall, J., Lennernas, B., Petersson, U., Johannessen, D. C., Sokal, M., Pigott, K., Yachnin, J., Garkavij, M., Strang, P., Harmenberg, J., Bolstad, B., Bruland, O. S. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007, 8, 587–594; https://doi.org/10.1016/s1470-2045(07)70147-x.Search in Google Scholar PubMed

6. Quist, S. W., Paulissen, J. H. J., Wyndaele, D. N. J., Nagarajah, J., Freriks, R. D. Costs of radium-223 and the pharmacy preparation 177Lu-PSMA-I&T for metastatic castration-resistant prostate cancer in Dutch hospitals. J. Med. Econ. 2023, 26, 366–375; https://doi.org/10.1080/13696998.2023.2183618.Search in Google Scholar PubMed

7. Paul, A. C., Pillai, K. C. Transfer and uptake of radium in a natural and in a technologically modified radiation environment. J. Environ. Radioact. 1986, 3, 55–73; https://doi.org/10.1016/0265-931x(86)90049-4.Search in Google Scholar

8. Abreu, M. M., Lopes, J., Santos, E. S., Magalhaes, M. C. F. Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants. J. Geochem. Explor. 2014, 142, 112–121; https://doi.org/10.1016/j.gexplo.2014.01.029.Search in Google Scholar

9. Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W., Wang, Y. Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J. Environ. Radioact. 2014, 129, 100–106; https://doi.org/10.1016/j.jenvrad.2013.12.012.Search in Google Scholar PubMed

10. Liu, Y., Zhou, W., Liu, H., Wei, Q., Gao, B., Chen, G. Spatial variability and radiation assessment of the radionuclides in soils and sediments around a uranium tailings reservoir, South of China. J. Radioanal. Nucl. Chem. 2020, 324, 33–42; https://doi.org/10.1007/s10967-020-07077-w.Search in Google Scholar

11. Petrova, R. T., Tsvetkova, E. H. Modelling of the behavior of natural radionuclides and the environmental risk in the sites from the mining uranium ore in Bulgaria. Ecol. Balk. 2019, 11, 155–163.Search in Google Scholar

12. Pearson, A. J., Gaw, S., Hermanspahn, N., Glover, C. N., Anderson, C. W. N. Radium in New Zealand agricultural soils: phosphate fertiliser inputs, soil activity concentrations and fractionation profiles. J. Environ. Radioact. 2019, 205, 119–126; https://doi.org/10.1016/j.jenvrad.2019.05.010.Search in Google Scholar PubMed

13. Saba, D., El Samad, O., Baydoun, R., Khozam, R., Manouchehri, N., Kassir, L., Kassouf, A., Chebib, H., Cambier, P., Ouaini, N. Radiological impact on uncultivated soil and Dittrichia viscosa plants around a Lebanese coastal fertilizer industry. Radiat. Protect. Environ. 2020, 43, 61–69; https://doi.org/10.4103/rpe.rpe_15_20.Search in Google Scholar

14. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 2019, 146, 789–797; https://doi.org/10.1016/j.microc.2019.02.001.Search in Google Scholar

15. Korany, K. A., Masoud, A. M., Rushdy, O. E., Alrowaili, Z. A., Hassanein, F. H., Taha, M. H. Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters. J. Radioanal. Nucl. Chem. 2021, 329, 391–399; https://doi.org/10.1007/s10967-021-07796-8.Search in Google Scholar

16. Louw, I. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (paper 1). J. Environ. Radioact. 2020, 217, 106214; https://doi.org/10.1016/j.jenvrad.2020.106214.Search in Google Scholar PubMed

17. Willey, N., Timbs, P. Radioactivity in future phosphogypsum: new predictions based on estimates of ‘peak P’ and rock phosphate resources. J. Environ. Radioact. 2022, 244, 106828; https://doi.org/10.1016/j.jenvrad.2022.106828.Search in Google Scholar PubMed

18. Amin, Y. M., Khandaker, M. U., Shyen, A. K. S., Mahat, R. H., Nor, R. M., Bradley, D. A. Radionuclide emissions from a coal-fired power plant. Appl. Radiat. Isot. 2013, 80, 109–116; https://doi.org/10.1016/j.apradiso.2013.06.014.Search in Google Scholar PubMed

19. Habib, M. A., Khan, R., Phoungthong, K. Evaluation of environmental radioactivity in soils around a coal burning power plant and a coal mining area in Barapukuria, Bangladesh: radiological risks assessment. Chem. Geol. 2022, 600, 120865; https://doi.org/10.1016/j.chemgeo.2022.120865.Search in Google Scholar

20. Murniasih, S., Prabasiwi, D. S., Sukirno Assessment of radiological hazards in soil, water and plants around coal power plant. At. Indones. 2022, 48, 137–145; https://doi.org/10.17146/aij.2022.1174.Search in Google Scholar

21. Abdelbary, H. M., Elsofany, E. A., Mohamed, Y. T., Abo-Aly, M. M., Attallah, M. F. Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 30836–30846; https://doi.org/10.1007/s11356-019-06183-x.Search in Google Scholar PubMed

22. Thakur, P., Ward, A. L., Gonzalez-Delgado, A. M. Optimal methods for preparation, separation, and determination of radium isotopes in environmental and biological samples. J. Environ. Radioact. 2021, 228, 106522; https://doi.org/10.1016/j.jenvrad.2020.106522.Search in Google Scholar PubMed

23. Narloch, D. C., Paschuk, S. A., Correa, J. N., Rocha, Z., Mazer, W., Montenegro Peddis Torres, C. A., Del Claro, F., Denyak, V., Schelin, H. R. Characterization of radionuclides present in portland cement, gypsum and phosphogypsum mortars. Radiat. Phys. Chem. 2019, 155, 315–318; https://doi.org/10.1016/j.radphyschem.2018.07.011.Search in Google Scholar

24. Curti, E., Xto, J., Borca, C. N., Henzler, K., Huthwelker, T., Prasianakis, N. I. Modelling Ra-bearing baryte nucleation/precipitation kinetics at the pore scale: application to radioactive waste disposal. Eur. J. Mineral. 2019, 31, 247–262; https://doi.org/10.1127/ejm/2019/0031-2818.Search in Google Scholar

25. Leier, M., Kiisk, M., Suursoo, S., Vaasma, T., Putk, K. Formation of radioactive waste in Estonian water treatment plants. J. Radiol. Prot. 2019, 39, 1–10; https://doi.org/10.1088/1361-6498/aaed49.Search in Google Scholar PubMed

26. Martinez, N. E., Jokisch, D. W., Dauer, L. T., Eckerman, K. F., Goans, R. E., Brockman, J. D., Tolmachev, S. Y., Avtandilashvili, M., MummaBoice, M. T. J. D.Jr., Leggett, R. W. Radium dial workers: back to the future. Int. J. Radiat. Biol. 2022, 98, 750–768; https://doi.org/10.1080/09553002.2021.1917785.Search in Google Scholar PubMed PubMed Central

27. Ferguson, N. Radium contamination of military sites. In Environmental Radiochemical Analysis; Royal Society of Chemistry: Cambridge, 1999; pp. 30–36.Search in Google Scholar

28. IAEA. The Environmental Behavior of Radium: Revised Edition; The International Atomic Energy Agency: Vienna, 2014. Technical Reports Series No. 476.Search in Google Scholar

29. Abbasi, A., Mirekhtiary, F. Lifetime risk assessment of radium-226 in drinking water samples. Int. J. Radiat. Res. 2019, 17, 163–169.Search in Google Scholar

30. Brugge, D., Buchner, V. Radium in the environment: exposure pathways and health effects. Rev. Environ. Health 2012, 27, 1–17; https://doi.org/10.1515/reveh-2012-0001.Search in Google Scholar PubMed

31. Stebbings, J. H. Health risks from radium in workplaces: an unfinished story. Occup. Med. State Art Rev. 2001, 16, 259–270.Search in Google Scholar

32. Yordanova, I. I., Banov, M. D., Misheva, L. G., Staneva, D. N., Bineva, T. K. Natural radioactivity in virgin soils and soils from some areas with closed uranium mining facilities in Bulgaria. Open Chem. 2015, 13, 600–605; https://doi.org/10.1515/chem-2015-0065.Search in Google Scholar

33. Gbadamosi, M. R., Afolabi, T. A., Banjoko, O. O., Ogunneye, A. L., Abudu, K. A., Ogunbanjo, O. O., Jegede, D. O. Spatial distribution and lifetime cancer risk due to naturally occurring radionuclides in soils around tar-sand deposit area of Ogun state, Southwest Nigeria. Chemosphere 2018, 193, 1036–1048.10.1016/j.chemosphere.2017.11.132Search in Google Scholar PubMed

34. Ivanova, K., Stojanovska, Z., Badulin, V., Kunovska, B., Yovcheva, M. Screening for risk assessment around closed uranium mining sites. Radioprotection 2016, 51, 193–198.10.1051/radiopro/2016021Search in Google Scholar

35. Murith, C., Baechler, S., Estier, S., Palacios-Gruson, M. Remediation of radium legacies from the Swiss watch industry. Radiat. Prot. Dosim. 2017, 173, 245–251; https://doi.org/10.1093/rpd/ncw335.Search in Google Scholar PubMed

36. Wang, J. L., Xu, B. W. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: a review. J. Environ. Radioact. 2023, 270, 107267.10.1016/j.jenvrad.2023.107267Search in Google Scholar PubMed

37. Wang, J. L., Zhuang, S. T. Extraction and adsorption of U(Ⅵ) from aqueous solution using affinity ligand-based technologies: an overview. Rev. Environ. Sci. Biotechnol. 2019, 18, 437–452; https://doi.org/10.1007/s11157-019-09507-y.Search in Google Scholar

38. Zhuang, S. T., Wang, J. L. Cesium removal from radioactive wastewater by adsorption and membrane technology. Front. Environ. Sci. Eng. 2024, 18, 38; https://doi.org/10.1007/s11783-024-1798-1.Search in Google Scholar

39. Groudev, S. N., Spasova, I. I., Georgiev, P. S. In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int. J. Miner. Process. 2001, 62, 301–308; https://doi.org/10.1016/s0301-7516(00)00061-2.Search in Google Scholar

40. Kim, G., Kim, S., Park, H., Kim, W., Park, U., Moon, J. Remediation of soil/concrete contaminated with uranium and radium by biological method. J. Radioanal. Nucl. Chem. 2013, 297, 71–78; https://doi.org/10.1007/s10967-012-2321-x.Search in Google Scholar

41. Ali, H., Khan, E., Sajad, M. A. Phytoremediation of heavy metals -concepts and applications. Chemosphere 2013, 91, 869–881; https://doi.org/10.1016/j.chemosphere.2013.01.075.Search in Google Scholar PubMed

42. Dushenkov, S. Trends in phytoremediation of radionuclides. Plant Soil 2003, 249, 167–175; https://doi.org/10.1023/a:1022527207359.10.1023/A:1022527207359Search in Google Scholar

43. Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., Naz, I. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere 2022, 291, 132979.10.1016/j.chemosphere.2021.132979Search in Google Scholar PubMed

44. Soudek, P., Petrik, P., Vagner, M., Tykva, R., Plojhar, V., Petrova, S., Vanek, T. Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. Eur. J. Soil Biol. 2007, 43, 251–261; https://doi.org/10.1016/j.ejsobi.2007.02.008.Search in Google Scholar

45. Soudek, P., Petrova, S., Benesova, D., Tykva, R., Vankova, R., Vanek, T. Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J. Environ. Radioact. 2007, 97, 76–82; https://doi.org/10.1016/j.jenvrad.2007.03.008.Search in Google Scholar PubMed

46. Kennen, K., Phyto, K. N. Principles and Resources for Site Remediation and Landscape Design; Routledge: New York, NY, 2015.Search in Google Scholar

47. Gong, Y., Zhao, D., Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res. 2018, 147, 440–460; https://doi.org/10.1016/j.watres.2018.10.024.Search in Google Scholar PubMed

48. Mendez, M. O., Maier, R. M. Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283; https://doi.org/10.1289/ehp.10608.Search in Google Scholar PubMed PubMed Central

49. Simon, S. L., Ibrahim, S. A. Biological uptake of radium by terrestrial plants. In The Environmental Behaviour of Radium, Vol. 1, Technical Reports Series No. 310, IAEA: Vienna, 1990; pp. 545–599.Search in Google Scholar

50. Mortvedt, J. J. Plant and soil relationships of uranium and thorium decay series radionuclides – a review. J. Environ. Qual. 1994, 23, 643–650; https://doi.org/10.2134/jeq1994.00472425002300040004x.Search in Google Scholar

51. Kaewtubtim, P., Meeinkuirt, W., Seepom, S., Pichtel, J. Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar. Pollut. Bull. 2017, 115, 391–400; https://doi.org/10.1016/j.marpolbul.2016.12.050.Search in Google Scholar PubMed

52. Chao, J. H., Chuang, C. Y. Accumulation of radium in relation to some chemical analogues in Dicranopteris linearis. Appl. Radiat. Isot. 2011, 69, 261–267; https://doi.org/10.1016/j.apradiso.2010.08.012.Search in Google Scholar PubMed

53. Fabritius, O., Puhakka, E., Li, X., Nurminen, A., Siitari-Kauppi, M. Radium sorption on biotite; surface complexation modeling study. Appl. Geochem. 2022, 140, 105289; https://doi.org/10.1016/j.apgeochem.2022.105289.Search in Google Scholar

54. Langmuir, D., Riese, A. C. The thermodynamic properties of radium. Geochim. Cosmochim. Acta 1985, 49, 1593–1601; https://doi.org/10.1016/0016-7037(85)90264-9.Search in Google Scholar

55. Urso, L., Hormann, V., Diener, A., Achatz, M. Modelling partition coefficients of radium in soils. Appl. Geochem. 2019, 105, 78–86; https://doi.org/10.1016/j.apgeochem.2019.04.014.Search in Google Scholar

56. Vandenhove, H., Eyckmans, T., Van Hees, V. Can barium and strontium Be used as tracers for radium in soil-plant transfer studies? J. Environ. Radioact. 2005, 81, 255–267; https://doi.org/10.1016/j.jenvrad.2004.01.039.Search in Google Scholar PubMed

57. Medley, P., Bollhoefer, A. Influence of group II metals on radium-226 concentration ratios in the native green plum (Buchanania obovata) from the Alligator rivers region, Northern Territory, Australia. J. Environ. Radioact. 2016, 151, 551–557; https://doi.org/10.1016/j.jenvrad.2015.07.013.Search in Google Scholar PubMed

58. IAEA. Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. IAEA Analytical Quality in Nuclear Applications Series No. 19. The International Atomic Energy Agency: Vienna, 2010.Search in Google Scholar

59. Peterson, R. N., Burnett, W. C., Dimova, N., Santos, I. R. Comparison of measurement methods for radium-226 on manganese-fiber. Limnol. Oceanogr. Meth. 2009, 7, 196–205; https://doi.org/10.4319/lom.2009.7.196.Search in Google Scholar

60. Suarez-Navarro, J. A., Exposito-Suarez, V. M., Crespo, M. T., Sanchez-Castano, B., Suarez-Navarro, M. J., Gasco, C., Barragan, M., Gascon, J. L., Pecker, R., Sanchez-Perez, L., Gonzalez-Cano, L., Rosario, A. Improvements in the radiochemical method for separating 226Ra in solid samples through coprecipitation with BaSO4. Appl. Radiat. Isot. 2022, 187, 110321; https://doi.org/10.1016/j.apradiso.2022.110321.Search in Google Scholar PubMed

61. Girault, F., Perrier, F. Measuring effective radium concentration with large numbers of samples. Part I – experimental method and uncertainties. J. Environ. Radioact. 2012, 113, 177–188; https://doi.org/10.1016/j.jenvrad.2012.06.006.Search in Google Scholar PubMed

62. Girault, F., Perrier, F. Measuring effective radium concentration with large numbers of samples. Part II – general properties and representativity. J. Environ. Radioact. 2012, 113, 189–202; https://doi.org/10.1016/j.jenvrad.2012.06.009.Search in Google Scholar PubMed

63. Girault, F., Perrier, F., Ourcival, J., Ferry, R., Gaudemer, Y., Bourges, F., Didon-Lescot, J. Substratum influences uptake of radium-226 by plants. Sci. Total Environ. 2021, 766, 142655.10.1016/j.scitotenv.2020.142655Search in Google Scholar PubMed

64. Perrier, F., Girault, F., Bouquerel, H. Effective radium-226 concentration in rocks, soils, plants and bones. In Radon, Health and Natural Hazards; Gilmore, G. K., Perrier, F. E., Crockett, R., Eds.; Geological Society, London, Special Publications, Vol. 451, 2018; pp. 113–129.10.1144/SP451.8Search in Google Scholar

65. Prakash, M. M., Kaliprasad, C. S., Narayana, Y., Jagadeesha, B. G. Distribution of radionuclides in vertical profile and physico – chemical parameters of soil in Somwarpet taluk, Coorg district, Karnataka state, India. Int. J. Environ. Anal. Chem. 2024, 104(3), 718–734.10.1080/03067319.2022.2032686Search in Google Scholar

66. Gottschling, E. C. B., Lettner, H., Hubmer, A. K., Schiller, A. Vegetation induced distinctions between radionuclide distribution in soils (Austria). J. Environ. Radioact. 2023, 256, 107038.10.1016/j.jenvrad.2022.107038Search in Google Scholar PubMed

67. Geras’Kin, S. A., Evseeva, T. I., Belykh, E. S., Majstrenko, T. A., Michalik, B., Taskaev, A. I. Effects on non-human species inhabiting areas with enhanced level of natural radioactivity in the North of Russia: a review. J. Environ. Radioact. 2007, 94, 151–182; https://doi.org/10.1016/j.jenvrad.2007.01.003.Search in Google Scholar PubMed

68. Matyskin, A. V., Ylmen, R., Lagerkvist, P., Rameback, H., Ekberg, C. Crystal structure of radium sulfate: an X-ray powder diffraction and density functional theory study. J. Solid State Chem. 2017, 253, 15–20; https://doi.org/10.1016/j.jssc.2017.05.024.Search in Google Scholar

69. Rigali, M. J., Brady, P. V., Moore, R. C. Radionuclide removal by apatite. Am. Miner. 2016, 101, 2611–2619; https://doi.org/10.2138/am-2016-5769.Search in Google Scholar

70. Greeman, D. J., Rose, A. W., Washington, J. W., Dobos, R. R., Ciolkosz, E. J. Geochemistry of radium in soils of the Eastern United States. Appl. Geochem. 1999, 14, 365–385; https://doi.org/10.1016/s0883-2927(98)00059-6.Search in Google Scholar

71. Schultz, M. K., Burnett, W. C., Inn, K. Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. J. Environ. Radioact. 1998, 40, 155–174; https://doi.org/10.1016/s0265-931x(97)00075-1.Search in Google Scholar

72. Abreu, M. M., Magalhaes, M. C. F. Assessment and reclamation of soils from uranium mining areas: case studies from Portugal. In Assessment, Restoration and Reclamation of Mining Influenced Soils; Bech, J., Bini, C., Pashkevich, M. A., Eds.; Academic Press Ltd-Elsevier Science Ltd: London, England, 2017; pp. 203–234.10.1016/B978-0-12-809588-1.00007-4Search in Google Scholar

73. Prieto, C., Lozano, J. C., Blanco Rodriguez, P., Vera Tome, F. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J. Hazard. Mater. 2013, 250, 439–446; https://doi.org/10.1016/j.jhazmat.2013.02.021.Search in Google Scholar PubMed

74. Blanco, P., Tomé, F. V., Lozano, J. C. Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J. Environ. Radioact. 2005, 79, 315–330; https://doi.org/10.1016/j.jenvrad.2004.08.006.Search in Google Scholar PubMed

75. Al Abdullah, J., Al-Masri, M. S., Amin, Y., Awad, I., Sheaib, Z. Chemical fractionation of radium-226 in NORM contaminated soil from oilfields. J. Environ. Radioact. 2016, 165, 47–53; https://doi.org/10.1016/j.jenvrad.2016.09.003.Search in Google Scholar PubMed

76. Nguyen, P. T. H., Van Thang, N., Ngoc, B. V., Cong, H. L., Thi, H. L. T. Treatment for removing radium in soil and groundwater. Appl. Radiat. Isot. 2022, 182, 110127; https://doi.org/10.1016/j.apradiso.2022.110127.Search in Google Scholar PubMed

77. Guillen, J., Munoz-Serrano, A., Salvador Baeza, A., Salas, A. Speciation of naturally occurring radionuclides in mediterranean soils: bioavailabilty assessment. Environ. Sci. Pollut. Res. 2018, 25, 6772–6782; https://doi.org/10.1007/s11356-017-1021-z.Search in Google Scholar PubMed

78. Mitchell, N., Perez-Sanchez, D., Thorne, M. C. A review of the behaviour of U-238 series radionuclides in soils and plants. J. Radiol. Prot. 2013, 33, R17–R48; https://doi.org/10.1088/0952-4746/33/2/r17.Search in Google Scholar

79. Sheppard, S. C., Sheppard, M. I., Tait, J. C., Sanipelli, B. L. Revision and meta-analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. J. Environ. Radioact. 2006, 89, 115–137; https://doi.org/10.1016/j.jenvrad.2006.03.003.Search in Google Scholar PubMed

80. Vandenhove, H., Van Hees, M. Predicting radium availability and uptake from soil properties. Chemosphere 2007, 69, 664–674; https://doi.org/10.1016/j.chemosphere.2007.02.054.Search in Google Scholar PubMed

81. Payne, T. E., Brendler, V., Ochs, M., Baeyens, B., Brown, P. L., Davis, J. A., Ekberg, C., Kulik, D. A., Lutzenkirchen, J., Missana, T., Tachi, Y., Van Loon, L. R., Altmann, S. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environ. Modell. Softw. 2013, 42, 143–156; https://doi.org/10.1016/j.envsoft.2013.01.002.Search in Google Scholar

82. IAEA. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments; The International Atomic Energy Agency: Vienna, 2009. IAEA-TECDOC-1616.Search in Google Scholar

83. IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments; The International Atomic Energy Agency: Vienna, Technical Report Series No. 472, 2010.Search in Google Scholar

84. Dalcorso, G., Fasani, E., Manara, A., Visioli, G., Furini, A. Heavy metal pollution: state of the art and innovation in phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412; https://doi.org/10.3390/ijms20143412.Search in Google Scholar PubMed PubMed Central

85. Zine, H., Midhat, L., Hakkou, R., El Adnani, M., Ouhammou, A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020, 10, e00654; https://doi.org/10.1016/j.sciaf.2020.e00654.Search in Google Scholar

86. Suman, J., Uhlik, O., Viktorova, J., Macek, T. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476; https://doi.org/10.3389/fpls.2018.01476.Search in Google Scholar PubMed PubMed Central

87. Moffett, D., Tellier, M. Uptake of radioisotopes by vegetation growing on uranium tailings. Can. J. Soil Sci. 1977, 57, 417–424; https://doi.org/10.4141/cjss77-047.Search in Google Scholar

88. Medley, P., Bollhoefer, A., Parry, D., Martin, P. Radium concentration factors in passionfruit (Passiflora foetida) from the Alligator rivers region, Northern Territory, Australia. J. Environ. Radioact. 2013, 126, 137–146; https://doi.org/10.1016/j.jenvrad.2013.07.018.Search in Google Scholar PubMed

89. Gerzabek, M. H., Strebl, F., Temmel, B. Plant uptake of radionuclides in lysimeter experiments. Environ. Pollut. 1998, 99, 93–103; https://doi.org/10.1016/s0269-7491(97)00167-x.Search in Google Scholar PubMed

90. Nezami, S., Malakouti, M. J., Samani, A. B., Maragheh, M. G. Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J. Environ. Radioact. 2016, 164, 145–150; https://doi.org/10.1016/j.jenvrad.2016.07.021.Search in Google Scholar PubMed

91. Tome, F. V., Rodriguez, P. B., Lozano, J. C. Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci. Total Environ. 2008, 393, 351–357; https://doi.org/10.1016/j.scitotenv.2008.01.013.Search in Google Scholar PubMed

92. Tome, F. V., Rodriguez, P. B., Lozano, J. C. The ability of Helianthus annuus L. And Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 2009, 74, 293–300; https://doi.org/10.1016/j.chemosphere.2008.09.002.Search in Google Scholar PubMed

93. Ellili, A., Rabier, J., Prudent, P., Salducci, M., Heckenroth, A., Lachaal, M., Laffont-Schwob, I. Decision-making criteria for plant-species selection for phytostabilization: issues of biodiversity and functionality. J. Environ. Manage. 2017, 201, 215–226; https://doi.org/10.1016/j.jenvman.2017.06.041.Search in Google Scholar PubMed

94. Pollard, A. J., Reeves, R. D., Baker, A. J. M. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 2014, 217, 8–17; https://doi.org/10.1016/j.plantsci.2013.11.011.Search in Google Scholar PubMed

95. Broadley, M. R., Willey, N. J. Differences in root uptake of radiocaesium by 30 plant taxa. Environ. Pollut. 1997, 97, 11–15; https://doi.org/10.1016/s0269-7491(97)00090-0.Search in Google Scholar PubMed

96. Van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., Schat, H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 2013, 362, 319–334; https://doi.org/10.1007/s11104-012-1287-3.Search in Google Scholar

97. Chao, J. H., Lee, H. P., Chiu, C. Y. Measurement of 224Ra uptake in a fern actively accumulating radium. Chemosphere 2006, 62, 1656–1664; https://doi.org/10.1016/j.chemosphere.2005.06.046.Search in Google Scholar PubMed

98. Song, G., Feng, Y. S., Zhu, Q. P., Lu, M. X., Chen, D. Y., Chen, Y. H. Dicranopteris dichotoma: a newly found radium and thorium-accumulating plant. J. Guangzhou Univ. 2014, 13, 81–87.Search in Google Scholar

99. Chen, H., Chen, H., Chen, Z. A review of in situ phytoextraction of rare earth elements from contaminated soils. Int. J. Phytoremediation 2022, 24, 557–566; https://doi.org/10.1080/15226514.2021.1957770.Search in Google Scholar PubMed

100. Xiao, H. Q., Zhang, Z. Y., Li, F. L., Chai, Z. F. Study on contents and distribution characteristics of REE in fern by NAA. Nuclear Tech. 2003, 26, 420–424.Search in Google Scholar

101. Jally, B., Laubie, B., Chour, Z., Muhr, L., Qiu, R., Morel, J. L., Tang, Y., Simonnot, M. A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China. Miner. Eng. 2021, 166, 106879; https://doi.org/10.1016/j.mineng.2021.106879.Search in Google Scholar

102. Ichihashi, H., Morita, H., Tatsukawa, R. Rare-earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ. Pollut. 1992, 76, 157–162; https://doi.org/10.1016/0269-7491(92)90103-h.Search in Google Scholar PubMed

103. Chen, T., Lei, M., Wan, X., Zhou, X., Yang, J., Guo, G., Cai, W. Element case studies: arsenic. In Agromining: Farming for Metals Extracting Unconventional Resources Using Plants; Vanderent, A., Echevarria, G., Baker, A., Morel, J. L., Eds.; Springer International Publishing: Cham, 2018; pp. 275–281.10.1007/978-3-319-61899-9_17Search in Google Scholar

104. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., Kennelley, E. D. A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 2001, 409, 579; https://doi.org/10.1038/35054664.Search in Google Scholar PubMed

105. Madruga, M. J., Brogueira, A., Alberto, G., Cardoso, F. 226Ra bioavailability to plants at the Urgeirica uranium mill tailings site. J. Environ. Radioact. 2001, 54, 175–188; https://doi.org/10.1016/s0265-931x(00)00173-9.Search in Google Scholar PubMed

106. Zhao, F. J., Dunham, S. J., Mcgrath, S. P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002, 156, 27–31; https://doi.org/10.1046/j.1469-8137.2002.00493.x.Search in Google Scholar

107. Kohda, Y. H., Endo, G., Kitajima, N., Sugawara, K., Chien, M., Inoue, C., Miyauchi, K. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: an 8-year study. Sci. Total Environ. 2022, 831, 154830; https://doi.org/10.1016/j.scitotenv.2022.154830.Search in Google Scholar PubMed

108. Kopp, P., Oestling, O., Burkart, W. Availability to and uptake by plants of radionuclides under different environmental-conditions. Toxicol. Environ. Chem. 1989, 23, 53–63; https://doi.org/10.1080/02772248909357450.Search in Google Scholar

109. Pennafranca, E., Fiszman, M., Lobao, N., Costarib, C., Trindade, H., Dossant, P. L., Batista, D. Radioactivity of Brazil nuts. Health Phys. 1968, 14, 95–99; https://doi.org/10.1097/00004032-196802000-00002.Search in Google Scholar

110. Willey, N. J. Soil to plant transfer of radionuclides: predicting the fate of multiple radioisotopes in plants. J. Environ. Radioact. 2014, 133, 31–34; https://doi.org/10.1016/j.jenvrad.2013.07.023.Search in Google Scholar PubMed

111. Evseeva, T., Majstrenko, T., Geras’Kin, S., Brown, J. E., Belykh, E. Estimation of ionizing radiation impact on natural Vicia cracca populations inhabiting areas contaminated with uranium mill tailings and radium production wastes. Sci. Total Environ. 2009, 407, 5335–5343; https://doi.org/10.1016/j.scitotenv.2009.06.037.Search in Google Scholar PubMed

112. James, J. P., Dileep, B. N., Ravi, P. M., Joshi, R. M., Ajith, T. L., Hegde, A. G., Sarkar, P. K. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region, India. J. Environ. Radioact. 2011, 102, 1070–1077; https://doi.org/10.1016/j.jenvrad.2011.07.011.Search in Google Scholar PubMed

113. Leslie, B.W., Pickett, D.A., Pearcy, E.C. Vegetation-Derived Insights on the Mobilization and Potential:Transport of Radionuclides from the Nopal I Natural Analog Site, Mexico. Mater Res. Soc. Symp. Proc. 1999, 556, 833–842.10.1557/PROC-556-833Search in Google Scholar

114. Soudek, P., Petrova, S., Benesova, D., Kotyza, J., Vagner, M., Vankova, R., Vanek, T. Study of soil-plant transfer of 226Ra under greenhouse conditions. J. Environ. Radioact. 2010, 101, 446–450; https://doi.org/10.1016/j.jenvrad.2008.08.003.Search in Google Scholar PubMed

115. Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Bradley, D. A., Mahat, R. H., Nor, R. M. Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia. J. Environ. Radioact. 2014, 135, 120–127; https://doi.org/10.1016/j.jenvrad.2014.04.009.Search in Google Scholar PubMed

116. Bal, S. S., Kursat, M., Kuluozturk, M. F., Celik, S. K., Yilmaz, E. Soil to plant transfer of 226Ra, 232Th and 137Cs to some medicinal and aromatic plants growing in Bitlis (Turkey). J. Environ. Radioact. 2023, 257, 107089.10.1016/j.jenvrad.2022.107089Search in Google Scholar PubMed

117. Ibikunle, S. B., Arogunjo, A. M., Ajayi, O. S. Characterization of radiation dose and soil-to-plant transfer factor of natural radionuclides in some cities from South-Western Nigeria and its effect on man. Sci. Afr. 2019, 3, e00062; https://doi.org/10.1016/j.sciaf.2019.e00062.Search in Google Scholar

118. Pulhani, V. A., Dafauti, S., Hegde, A. G., Sharma, R. M., Mishra, U. C. Uptake and distribution of natural radioactivity in wheat plants from soil. J. Environ. Radioact. 2005, 79, 331–346; https://doi.org/10.1016/j.jenvrad.2004.08.007.Search in Google Scholar PubMed

119. Markose, P. M., Bhat, I. S., Pillai, K. C. Some characteristics of 226Ra transfer from soil and uranium mill tailings to plants. J. Environ. Radioact. 1993, 21, 131–142; https://doi.org/10.1016/0265-931x(93)90050-h.Search in Google Scholar

120. Azeez, H. H., Mansour, H. H., Ahmad, S. T. Transfer of natural radioactive nuclides from soil to plant crops. Appl. Radiat. Isot. 2019, 147, 152–158; https://doi.org/10.1016/j.apradiso.2019.03.010.Search in Google Scholar PubMed

121. Abu Shayeb, M., Alharbi, T., Baloch, M. A., Alsamhan, O. A. R. Transfer factors for natural radioactivity into date palm pits. J. Environ. Radioact. 2017, 167, 75–79; https://doi.org/10.1016/j.jenvrad.2016.11.014.Search in Google Scholar PubMed

122. Changizi, V., Jafarpoor, Z., Naseri, M. Measurement of 226Ra, 228Ra, 137CS and 40K in edible parts of two types of leafy vegetables cultivated in tehran province-Iran and resultant annual ingestion radiation dose. Iran. J. Radiat. Res. 2010, 8, 103–110.Search in Google Scholar

123. Shanthi, G., Maniyan, C. G., Raj, G. A. G., Kumaran, J. T. T. Radioactivity in food crops from high-background radiation area in Southwest India. Curr. Sci. 2009, 97, 1331–1335.Search in Google Scholar

124. Pozolotina, V. N., Sobakin, P. I., Molchanova, I. V., Karavaeva, E. N., Mikhailovskaya, L. N. Migration and biological effect of natural heavy radionuclides on plants. Russ. J. Ecol. 2000, 31, 14–19; https://doi.org/10.1007/bf02799720.Search in Google Scholar

125. Soudek, P., Podracká, E., Vágner, M., Vanek, T., Petrík, P., Tykva, R. 226Ra uptake from soils into different plant species. J. Radioanal. Nucl. Chem. 2004, 262, 187–189; https://doi.org/10.1023/b:jrnc.0000040872.61650.a3.10.1023/B:JRNC.0000040872.61650.a3Search in Google Scholar

126. Mislevy, P., Blue, W. G., Roessler, C. E. Productivity of clay tailings from phosphate mining. 2. Forage crops. J. Environ. Qual. 1990, 19, 694–700; https://doi.org/10.2134/jeq1990.00472425001900040011x.Search in Google Scholar

127. Mislevy, P., Blue, W. G., Roessler, C. E. Productivity of clay tailings from phosphate mining. 1. Biomass crops. J. Environ. Qual. 1989, 18, 95–100; https://doi.org/10.2134/jeq1989.00472425001800010017x.Search in Google Scholar

128. Mislevy, P., Blue, W. G., Roessler, C. E., Martin, F. G. Productivity of clay tailings from phosphate mining. 3. Grain crops. J. Environ. Qual. 1991, 20, 788–794; https://doi.org/10.2134/jeq1991.00472425002000040013x.Search in Google Scholar

129. Aviv, O., Tripler, E., Yungrais, Z., Baziza, T., Vaknin, D., Koch, J. Uptake of 226Ra from irrigation water by basil crops. Radiat. Prot. Dosim. 2020, 192, 496–504; https://doi.org/10.1093/rpd/ncab013.Search in Google Scholar PubMed

130. Bettencourt, A. O., Teixeira, M., Elias, M., Faisca, M. C. Soil to plant transfer of Ra-226. J. Environ. Radioact. 1988, 6, 49–60; https://doi.org/10.1016/0265-931x(88)90067-7.Search in Google Scholar

131. Blanco Rodriguez, P., Vera Tome, F., Lozano, J. C. About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. Sci. Total Environ. 2002, 284, 167–175; https://doi.org/10.1016/s0048-9697(01)00877-4.Search in Google Scholar PubMed

132. Vasconcellos, L., Amaral, E., Vianna, M. E., Franca, E. P. Uptake of Ra-226 and Pb-210 by food crops cultivated in a region of high natural radioactivity in Brazil. J. Environ. Radioact. 1987, 5, 287–302; https://doi.org/10.1016/0265-931x(87)90004-x.Search in Google Scholar

133. Uchida, S., Tagami, K. Soil-to-crop transfer factors of radium in Japanese agricultural fields. J. Nuclear Radiochem. Sci. 2007, 8, 137–142; https://doi.org/10.14494/jnrs2000.8.137.Search in Google Scholar

134. Tome, F. V., Rodríguez, M., Lozano, J. C. Soil-to-plant transfer factors for natural radionuclides and stable elements in a mediterranean area. J. Environ. Radioact. 2003, 65, 161–175; https://doi.org/10.1016/s0265-931x(02)00094-2.Search in Google Scholar PubMed

135. Cerne, M., Smodis, B., Strok, M., Jacimovic, R. Plant accumulation of natural radionuclides as affected by substrate contaminated with uranium-mill tailings. Water, Air, Soil Pollut. 2018, 229, 371; https://doi.org/10.1007/s11270-018-4000-1.Search in Google Scholar

136. Chen, S. B., Zhu, Y. G., Hu, Q. H. Soil to plant transfer of 238U 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J. Environ. Radioact. 2005, 82, 223–236; https://doi.org/10.1016/j.jenvrad.2005.01.009.Search in Google Scholar PubMed

137. Uchida, S., Tagami, K., Shang, Z. R., Choi, Y. H. Uptake of radionuclides and stable elements from paddy soil to rice: a review. J. Environ. Radioact. 2009, 100, 739–745; https://doi.org/10.1016/j.jenvrad.2008.10.008.Search in Google Scholar PubMed

138. Blanco Rodriguez, P., Vera Tome, F., Lozano, J. C. Influence of soil structure on the “fv approach” applied to 238U and 226Ra. Chemosphere 2017, 168, 832–838; https://doi.org/10.1016/j.chemosphere.2016.10.127.Search in Google Scholar PubMed

139. Salt, D. E., Smith, R. D., Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1998, 49, 643–668; https://doi.org/10.1146/annurev.arplant.49.1.643.Search in Google Scholar PubMed

140. Sheppard, S. C., Evenden, W. G. The assumption of linearity in soil and plant concentration ratios – an experimental evaluation. J. Environ. Radioact. 1988, 7, 221–247; https://doi.org/10.1016/0265-931x(88)90030-6.Search in Google Scholar

141. Bui, N. T., Vu, N. B., Nguyen, T. T. V., Truong, T. H. L. Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city, Vietnam. Chemosphere 2020, 259, 127432; https://doi.org/10.1016/j.chemosphere.2020.127432.Search in Google Scholar PubMed

142. Blanco Rodriguez, P., Vera Tome, F., Perez Fernandez, M., Lozano, J. C. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L. Sci. Total Environ. 2006, 361, 1–7; https://doi.org/10.1016/j.scitotenv.2005.08.020.Search in Google Scholar PubMed

143. Simon, S. L., Ibrahim, S. A. The plant-soil concentration ratio for calcium, radium, lead, and polonium – evidence for nonlinearity with reference to substrate concentration. J. Environ. Radioact. 1987, 5, 123–142; https://doi.org/10.1016/0265-931x(87)90028-2.Search in Google Scholar

144. Sheppard, S. C., Evenden, W. G. Critical compilation and review of plant-soil concentration ratios for uranium, thorium and lead. J. Environ. Radioact. 1988, 8, 255–285; https://doi.org/10.1016/0265-931x(88)90051-3.Search in Google Scholar

145. Tuovinen, T. S., Kolehmainen, M., Roivainen, P., Kumlin, T., Makkonen, S., Holopainen, T., Juutilainen, J. Nonlinear transfer of elements from soil to plants: impact on radioecological modeling. Radiat. Environ. Biophys. 2016, 55, 393–400; https://doi.org/10.1007/s00411-016-0655-4.Search in Google Scholar PubMed

146. Tagami, K., Uchida, S. Radium-226 transfer factor from soils to crops and its simple estimation method using uranium and barium concentrations. Chemosphere 2009, 77, 105–114; https://doi.org/10.1016/j.chemosphere.2009.05.012.Search in Google Scholar PubMed

147. Vandenhove, H., Olyslaegers, G., Sanzharova, N., Shubina, O., Reed, E., Shang, Z., Velasco, H. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J. Environ. Radioact. 2009, 100, 721–732; https://doi.org/10.1016/j.jenvrad.2008.10.014.Search in Google Scholar PubMed

148. Velasco, H., Ayub, J. J., Sansone, U. Analysis of radionuclide transfer factors from soil to plant in tropical and subtropical environments. Appl. Radiat. Isot. 2008, 66, 1759–1763; https://doi.org/10.1016/j.apradiso.2007.06.015.Search in Google Scholar PubMed

149. Velasco, H., Ayub, J. J., Sansone, U. B. Influence of crop types and soil properties on radionuclide soil-to-plant transfer factors in tropical and subtropical environments. J. Environ. Radioact. 2009, 100, 733–738; https://doi.org/10.1016/j.jenvrad.2008.12.014.Search in Google Scholar PubMed

150. Strok, M., Smodis, B. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nucl. Eng. Des. 2013, 261, 279–284; https://doi.org/10.1016/j.nucengdes.2013.03.036.Search in Google Scholar

151. Kritsananuwat, R., Chanyotha, S., Kranrod, C., Pengvanich, P. Transfer factor of 226Ra, 232Th and 40K from soil to alpinia galangal plant grown in northern Thailand. In International Nuclear Science and Technology Conference 2016; Thammasat Univ, Bangkok, Thailand. Journal of Physics Conference Series, 2017, Vol. 860, p. 012008.Search in Google Scholar

152. Ehlken, S., Kirchner, G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J. Environ. Radioact. 2002, 58, 97–112; https://doi.org/10.1016/s0265-931x(01)00060-1.Search in Google Scholar PubMed

153. Charro, E., Moyano, A. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site. Radiat. Phys. Chem. 2017, 141, 200–206; https://doi.org/10.1016/j.radphyschem.2017.07.014.Search in Google Scholar

154. Hao, D. V., Thanh, D. N., Peka, A., Hegedus, M., Csordas, A., Kovacs, T. Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J. Environ. Radioact. 2020, 223, 106416; https://doi.org/10.1016/j.jenvrad.2020.106416.Search in Google Scholar PubMed

155. Karunakara, N., Somashekarappa, H. M., Narayana, Y., Avadhani, D. N., Mahesh, H. M., Siddappa, K. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga, India. J. Environ. Radioact. 2003, 65, 255–266; https://doi.org/10.1016/s0265-931x(02)00101-7.Search in Google Scholar PubMed

156. Sam, A. K., Eriksson, A. Ra-226 uptake by vegetation grown in Western Sudan. J. Environ. Radioact. 1995, 29, 27–38; https://doi.org/10.1016/0265-931x(95)90935-r.Search in Google Scholar

157. Nurtjahya, E., Mellawati, J., Pratama, D., Syahrir, S. Study of soil-to-plant transfer factors (TFs) of 226Ra, 232Th, and 40K on plants cultivated on ex-tin mining land in bangka belitung, Indonesia. J. Environ. Radioact. 2023, 261, 107144; https://doi.org/10.1016/j.jenvrad.2023.107144.Search in Google Scholar PubMed

158. Linsalata, P., Morse, R. S., Ford, H., Eisenbud, M., Franca, E. P., Decastro, M. B., Lobao, N., Sachett, I., Carlos, M. An assessment of soil-to-plant concentration ratios for some natural analogs of the transuranic elements. Health Phys. 1989, 56, 33–46; https://doi.org/10.1097/00004032-198901000-00003.Search in Google Scholar PubMed

159. Al-Hamarneh, I. F., Alkhomashi, N., Almasoud, F. I. Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the Northwestern Saudi Arabia. J. Environ. Radioact. 2016, 160, 1–7; https://doi.org/10.1016/j.jenvrad.2016.04.012.Search in Google Scholar PubMed

160. Mrdakovic Popic, J., Oughton, D. H. H., Salbu, B., Skipperud, L. Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ. Sci.: Process. Impacts 2020, 22, 350–363; https://doi.org/10.1039/c9em00408d.Search in Google Scholar PubMed

161. Saenboonruang, K., Phonchanthuek, E., Prasandee, K. Soil-to-plant transfer factors of natural radionuclides (226Ra and 40K) in selected Thai medicinal plants. J. Environ. Radioact. 2018, 184, 1–5; https://doi.org/10.1016/j.jenvrad.2018.01.004.Search in Google Scholar PubMed

162. Davies, H. S., Rosas-Moreno, J., Cox, F., Lythgoe, P., Bewsher, A., Livens, F. R., Robinson, C. H., Pittman, J. K. Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. Sci. Total Environ. 2018, 640, 921–934; https://doi.org/10.1016/j.scitotenv.2018.05.370.Search in Google Scholar PubMed

163. Million, J. B., Sartain, J. B., Gonzalez, R. X., Carrier, W. D. Ra-226 and calcium-uptake by crops grown in mixtures of sand and clay tailings from phosphate mining. J. Environ. Qual. 1994, 23, 671–676; https://doi.org/10.2134/jeq1994.00472425002300040008x.Search in Google Scholar

164. Tome, F. V., Rodriguez, P. B., Lozano, J. C. Distribution and mobilization of U, Th and 226Ra in the plant-soil compartments of a mineralized uranium area in South-West Spain. J. Environ. Radioact. 2002, 59, 41–60; https://doi.org/10.1016/s0265-931x(01)00035-2.Search in Google Scholar PubMed

165. Lauria, D. C., Ribeiro, F. C. A., Conti, C. C., Loureiro, F. A. Radium and uranium levels in vegetables grown using different farming management systems. J. Environ. Radioact. 2009, 100, 176–183; https://doi.org/10.1016/j.jenvrad.2008.11.006.Search in Google Scholar PubMed

166. Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Mahat, R. Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular Malaysia for the estimation of ingestion dose to man. Ann. Nucl. Energy 2015, 76, 85–93; https://doi.org/10.1016/j.anucene.2014.09.036.Search in Google Scholar

167. Naidu, R., Harter, R. D. Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci. Soc. Am. J. 1998, 62, 644–650; https://doi.org/10.2136/sssaj1998.03615995006200030014x.Search in Google Scholar

168. Borggaard, O. K., Holm, P. E., Strobel, B. W. Potential of dissolved organic matter (DOM) to extract as, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review. Geoderma 2019, 343, 235–246; https://doi.org/10.1016/j.geoderma.2019.02.041.Search in Google Scholar

169. Keith-Roach, M. J. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: a review. Sci. Total Environ. 2008, 396, 1–11; https://doi.org/10.1016/j.scitotenv.2008.02.030.Search in Google Scholar PubMed

170. Means, J. L., Alexander, C. A. The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes. Nuclear Chem. Waste Manage. 1981, 2, 183–196; https://doi.org/10.1016/0191-815x(81)90014-0.Search in Google Scholar

171. Serne, R., Cantrell, C., Lindenmeier, C., Owen, A., Kutnyakov, I., Orr, R., Felmy, A. Radionuclide-chelating agent complexes in low-level radioactive decontamination waste; stability, adsorption and transport potential. Technical Report: NUREG/CR- 6758; PNNL-13774. U.S. Department of Energy, Richland, WA (United States), 2002.10.2172/975006Search in Google Scholar

172. Gunn, K. B., Mistry, K. B. Effect of chelating agents on absorption of radium by plants. Plant Soil 1970, 33, 7; https://doi.org/10.1007/bf01378192.Search in Google Scholar

173. Georgiev, P., Groudev, S., Spasova, I., Nicolova, M. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation. J. Geochem. Explor. 2014, 142, 122–129; https://doi.org/10.1016/j.gexplo.2014.02.024.Search in Google Scholar

174. Hu, N., Chen, S., Lang, T., Zhang, H., Chen, W., Li, G., Ding, D. A novel method for determining the adequate dose of a chelating agent for phytoremediation of radionulides contaminated soils by M. cordata. J. Environ. Radioact. 2021, 227, 106468; https://doi.org/10.1016/j.jenvrad.2020.106468.Search in Google Scholar PubMed

175. Huang, J., Blaylock, M. J., Kapulnik, Y., Ensley, B. D. Phytoremediation of uranium contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 1998, 32, 2004–2008; https://doi.org/10.1021/es971027u.Search in Google Scholar

176. Duquene, L., Tack, F., Meers, E., Baeten, J., Wannijn, J., Vandenhovea, H. Effect of biodegradable amendments on uranium solubility in contaminated soils. Sci. Tot. Environ. 2008, 391, 26–33; https://doi.org/10.1016/j.scitotenv.2007.10.042.Search in Google Scholar PubMed

177. Nezami, S., Malakouti, M. J., Samani, A. B., Maragheh, M. G. The role of organic acids on 226Ra transfer factor in corn (Zea mays L.). J. Radioanal. Nucl. Chem. 2017, 313, 13–18; https://doi.org/10.1007/s10967-017-5265-3.Search in Google Scholar

178. Thiry, Y., Van Hees, M. Evolution of pH, organic matter and 226radium/calcium partitioning in U-mining debris following revegetation with pine trees. Sci. Total Environ. 2008, 393, 111–117; https://doi.org/10.1016/j.scitotenv.2007.12.020.Search in Google Scholar PubMed

179. Mang, K. C., Ntushelo, K. Phytoextraction and phytostabilisation approaches of heavy metal remediation in acid mine drainage with case studies: a review. Appl. Ecol. Environ. Res. 2019, 17, 6129–6149; https://doi.org/10.15666/aeer/1703_61296149.Search in Google Scholar

180. Li, X., Huang, L. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015, 45, 813–839; https://doi.org/10.1080/10643389.2014.921977.Search in Google Scholar

Received: 2023-11-08
Accepted: 2024-01-19
Published Online: 2024-05-14

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0248/html
Scroll to top button