Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 11, 2023

Effect of calcium on niobium solubility in alkaline solutions

  • Saki Ohira EMAIL logo , Takeyasu Abe and Yoshihisa Iida
From the journal Radiochimica Acta

Abstract

The solubility of niobium-94 (94Nb) in calcium alkaline solutions is one of the important parameters in safety assessment of intermediate-depth disposal which are assumed to use cementitious materials. Nb solubility and solubility-limiting solid phases of Nb in these systems remain unclear. The oversaturation solubility experiments were performed systematically in the 0.001–0.1 mol dm−3 (M) CaCl2 solutions under alkali conditions, and the characterization of precipitated solid phase controlling Nb solubility was conducted. The negative dependence of Nb solubilities on pH and calcium (Ca) concentration was observed in solubility experiments, and the Ca/Nb molar ratio of precipitated solid phase was 0.66. The pH and Ca dependence of Nb solubilities was reproduced by the reaction with Nb aqueous species Nb(OH)6 and Ca–Nb oxide with the Ca/Nb ratio of 0.66, e.g., Ca4Nb6O19 (am). With increasing pH, Nb concentrations in the 0.001–0.1 M CaCl2 solutions were significantly lower than those calculated from thermodynamic data without Ca–Nb solid. This work provides systematic evidence that the presence of Ca clearly affects Nb solubility. Since calcium is a major component of groundwater and cement pore water, the Ca–Nb solid phase should be considered in the Nb solubility assessment.


Corresponding author: Saki Ohira, Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki, 319-1195, Japan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

References

1. Gonzalez de Vicente, S. M., Smith, N. A., El-Guebaly, L., Ciattaglia, S., Pace, L. D., Gilbert, M., Mandoki, R., Rosanvallon, S., Someya, Y., Tobita, K., Torcy, D. Overview on the management of radioactive waste from fusion facilities: ITER, demonstration machines and power plants. Nucl. Fusion 2022, 62, 085001; https://doi.org/10.1088/1741-4326/ac62f7.Search in Google Scholar

2. Hubert-Pfalzgraf, L. G. Niobium & tantalum: inorganic & coordination chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, USA, 2011.10.1002/9781119951438.eibc0143Search in Google Scholar

3. Peiffert, C., Nguyen-Trung, C., Palmer, D. A., Laval, J. P., Giffaut, E. Solubility of B-Nb2O5 and the hydrolysis of niobium(V) in aqueous solution as a function of temperature and ionic strength. J. Solut. Chem. 2010, 39, 197; https://doi.org/10.1007/s10953-010-9495-z.Search in Google Scholar

4. Giffault, E., Grivé, M., Blanc, Ph., Vieillard, Ph., Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L. Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 2014, 49, 225; https://doi.org/10.1016/j.apgeochem.2014.05.007.Search in Google Scholar

5. Kitamura, A. Update of JAEA-TDB: update of thermodynamic data for zirconium and those for isosaccahrinate, Tentative selection of thermodynamic data for ternary M2+–UO22+–CO32− system and integration with JAEA’s thermodynamic database for geochemical calculations. In JAEA-Data/Code 2018-018; Japan Atomic Energy Agency: Tokai, Japan, 2018.Search in Google Scholar

6. Lothenbach, B., Ochs, M., Wanner, H., Yui, M. Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution; Japan Nuclear Cycle Development Inst: Tokai, Japan, 1999.Search in Google Scholar

7. Sillén, L. G., Marttell, A. Stability Constants of Metal-Ion Complexes, Vol. 17; Special publication Chemical Society: London, UK, 1964.Search in Google Scholar

8. Etxebarria, N., Fernandez, L. A., Madariaga, J. M. On the hydrolysis of niobium(V) and tantalum(V) in 3 mol/dm KCl at 25 °C. Part 1. Construction of a thermodynamic model for Nb(V). J. Chem. Soc. Dalton Trans. 1994, 20, 3055; https://doi.org/10.1039/dt9940003055.Search in Google Scholar

9. Deblonde, G. J. P., Chagnes, A., Bélair, S., Cote, G. Solubility of niobium(V) and tantalum(V) under mild alkaline conditions. Hydrometallurgy 2015, 156, 99; https://doi.org/10.1016/j.hydromet.2015.05.015.Search in Google Scholar

10. Park, J. S., Shin, S. B., Ahn, S., Lee, J. Y. Safety assessment of second-phase disposal facility in Gyeongju low- and intermediate-level radioactive waste (LILW) repository using RESRADOFFSITE code. J. Nucl. Sci. Technol. 2021, 58, 1256; https://doi.org/10.1080/00223131.2021.1936255.Search in Google Scholar

11. Mihara, M., Sasaki, R. Radio-nuclide Migration Datasets (RAMDA) for the Safety Assessment of TRU Waste Repositories in Japan, JNC TN8400 2005-027; Japan Nuclear Cycle Develop Institute: Tokai, Japan, 2005.Search in Google Scholar

12. Felmy, R. A., Rai, D., Mason, J. M. The solubility of CaMoO4(c) and an aqueous thermodynamic model for Ca2+ –MoO42– ion interactions. J. Solut. Chem. 1992, 21, 525; https://doi.org/10.1007/bf00649561.Search in Google Scholar

13. Lothenbach, B., Ochs, M., Hager, D. Thermodynamic data for the solubility of tin(IV) in aqueous cementitious environments. Radiochim. Acta 2000, 88, 521; https://doi.org/10.1524/ract.2000.88.9-11.521.Search in Google Scholar

14. Robins, R. G. The solubility of metal arsenates. Metall. Trans. A B 1981, 12, 103; https://doi.org/10.1007/bf02674763.Search in Google Scholar

15. Talerico, C., Ochs, M., Giffaut, E. Solubility of niobium(V) under cementitious conditions: importance of calcium niobate. Mat. Res. Soc. Symp. proc. 2004, 824, 443.10.1557/PROC-824-CC8.31Search in Google Scholar

16. Yamaguchi, T., Ohira, S., Hemmi, K., Barr, L., Shimada, A., Maeda, T., Iida, Y. Consideration on modeling of Nb sorption onto clay minerals. Radiochim. Acta 2020, 108, 873; https://doi.org/10.1515/ract-2020-0006.Search in Google Scholar

17. Dolder, F., Mäder, U., Jenni, A., Schwendener, N. Experimental characterization of cement–bentonite interaction using core infiltration techniques and 4D computed tomography. Phys. Chem. Earth 2014, 70, 104; https://doi.org/10.1016/j.pce.2013.11.002.Search in Google Scholar

18. Iida, Y., Yamaguchi, T., Tanaka, T., Nakayama, S. Solubility of selenium at high ionic strength under anoxic conditions. J. Nucl. Sci. Technol. 2010, 47, 5; https://doi.org/10.1080/18811248.2010.9711633.Search in Google Scholar

19. Stumm, W., Morgan, J. J. Aquatic Chemistry, 3rd ed.; John Wiley & Sons, Inc.: New York, 1996.Search in Google Scholar

20. Grenthe, I., Fuger, J., Lemire, R. J., Muller, A. B., Nguyen-Trung Cregu, C., Wanner, H. Chemical thermodynamics of Uranium; OECD: Amsterdam, Netherland, 1992.Search in Google Scholar

21. Bulut, R., Lytton, L., Wray, W. K. Soil suction measurements by filter paper. In Proceedings of Geo-Institute Shallow Foundation and Soil Properties Committee Sessions at the ASCE 2001 Civil Engineering Geotechnical Special Publication, Vol. 115, 2001; p. 243.10.1061/40592(270)14Search in Google Scholar

22. Lapitskii, A. V., Pchelkin, V. A. Study on solubility products of niobate with di-valent cations. Vestnik Moscow Univ. 1956, 11, 69 [in Russia].Search in Google Scholar

23. Mingming, F., Kim, C. H., Thomas, E. M. Dielectric properties of the lamellar niobates and titanoniobates AM2Nb3O10 and ATiNbO5 (A = H, K, M = Ca, Pb), and their condensation products Ca4Nb6O19 and Ti2Nb2O9. Chem. Mater. 1999, 11, 1519; https://doi.org/10.1021/cm981065s.Search in Google Scholar

24. Chen, Y., Zhao, X., Ma, H., Ma, S., Huang, G., Makita, Y., Bai, X., Yang, X. Structure and dehydration of layered perovskite niobate with bilayer hydrates prepared by exfoliation/self- assembly process. J. Solid State Chem. 2008, 181, 1684; https://doi.org/10.1016/j.jssc.2008.06.014.Search in Google Scholar

25. Friis, H., Weller, M. T., Kampf, A. R., Hansesmarkite, Ca2Mn2Nb6O19·20H2O. A new hexaniobate from a syenite pegmatite in the Larvik Plutonic Complex, southern Norway. Mineral. Mag. 2017, 81, 543; https://doi.org/10.1180/minmag.2016.080.109.Search in Google Scholar

26. Nyman, M., Alam, M. T., Bonhomme, F., Rodriguez, M. A., Frazer, S. C., Welk, E. M. Solid-state structures and solution behavior of alkali salts of the [Nb6O19]8−-lindqvist ion. J. Cluster Sci. 2006, 17, 197; https://doi.org/10.1007/s10876-006-0049-x.Search in Google Scholar

27. Filella, M., May, M. P. The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest. Appl. Geochem. 2020, 122, 104729; https://doi.org/10.1016/j.apgeochem.2020.104729.Search in Google Scholar

28. Black, R. J., Nyman, M., Casey, H. W. Rates of oxygen exchange between the [HxNb6O19]8−x(aq) lindqvist ion and aqueous solutions. J. Am. Chem. Soc. 2006, 128, 14712; https://doi.org/10.1021/ja065529w.Search in Google Scholar PubMed

29. Klemperera, W. G., Marek, K. A. An 17O NMR study of hydrolyzed Nb(V) in weakly acidic and basic aqueous solution. J. Inorg. Chem. 2013, 10, 1762; https://doi.org/10.1002/ejic.201201231.Search in Google Scholar PubMed PubMed Central

30. Wen, J., Wu, Y., Lin, S., Ning, P. Characterization strategy of polymeric transition metal species transformation for high-purity metal recovery. Green Chem. Eng. 2021, 2, 309; https://doi.org/10.1016/j.gce.2021.06.002.Search in Google Scholar

Received: 2022-12-07
Accepted: 2023-03-29
Published Online: 2023-04-11
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2022-0115/html
Scroll to top button