Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 11, 2023

Development of purification of no-carrier-added 47Sc of theranostic interest: selective separation study from the natTi(n,p) process

  • Hoda E. Rizk , Mohamed M. E. Breky and Mohamed F. Attallah ORCID logo EMAIL logo
From the journal Radiochimica Acta

Abstract

Scandium-47 is one of the most promising medical radioisotopes, and its production and trace separation make it an attractive candidate for theranostic application. In this study, the production of no-carrier-added (NCA) 47Sc through the natTi(n,p) reaction and subsequent purification using liquid–liquid extraction was done for the theranostic application. The comparative separation of NCA 47Sc after the dissolution of an activated Ti target using Di-2-Ethylhexyl Phosphoric Acid (HDEHP) in kerosene was evaluated. The extraction process was optimized in terms of the concentration of extractant, extraction time, pH, and reaction temperature to achieve the maximum possible separation. HDEHP is efficient and promising for rapid extraction and separation of NCA 47Sc from Ti ions at low acidity (pH 0.85) with high extraction percent (>99%), contaminated with 22.3% of Ti ions after 5 min of extraction time. Different stripping reagents were used to separate loaded 47Sc and Ti ions. Firstly, 5 M HCl was enough for stripping the loaded Ti ions. Then the loaded 47Sc was separated with a purity of 100% using 0.05 M NaOH. The obtained results find the HDEHP a promising extractant for efficient separation of 47Sc from irradiated Ti target for preparing the 47Sc radiopharmaceuticals for theranostics applications.


Corresponding author: Mohamed F. Attallah, Analytical Chemistry and Control Department, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt, E-mail:

Funding source: The Scientific, Technology & Innovation Funding Authority, Egypt, STDF Research Contract

Award Identifier / Grant number: 43337

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: This work was financially supported by the Scientific, Technology & Innovation Funding Authority, Egypt, STDF Research Contract No: 43337. The PI of this project (M.F. Attallah) would like to acknowledge and extend appreciation to the ETRR-2 crew at the EAEA for their valuable assistance in the production of requested radioisotopes in due time.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stöcklin, G., Qaim, S., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70, 249; https://doi.org/10.1524/ract.1995.7071.s1.249.Search in Google Scholar

2. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222.Search in Google Scholar

3. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; https://doi.org/10.3390/ph10020056.Search in Google Scholar PubMed PubMed Central

4. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

5. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar

6. Huclier-Markai, S., Alliot, C., Kerdjoudj, R., Mougin-Degraef, M., Chouin, N., Haddad, F. Promising scandium radionuclides for nuclear medicine: a review on the production and chemistry up to in vivo proofs of concept. Cancer Biother. Radiopharm. 2018, 33, 316; https://doi.org/10.1089/cbr.2018.2485.Search in Google Scholar PubMed

7. Yordanova, A., Eppard, E., Kürpig, S., Bundschuh, R. A., Schönberger, S., Gonzalez-Carmona, M., Feldmann, G., Ahmad zadehfar, H., Essler, M. Theranostics in nuclear medicine practice. OncoTargets Ther. 2017, 10, 4821; https://doi.org/10.2147/ott.s140671.Search in Google Scholar

8. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S. Radiometals for combined imaging and therapy. Chem. Rev. 2013, 113, 858; https://doi.org/10.1021/cr3003104.Search in Google Scholar PubMed

9. Hovhannisyan, G. H., Bakhshiyan, T. M., Balabekyan, A. R., Kerobyan, I. A. Production of 47Sc in photonuclear reactions on natTi targets at the bremsstrahlung endpoint energy of 30 and 40 MeV. Appl. Radiat. Isot. 2022, 182, 110138; https://doi.org/10.1016/j.apradiso.2022.110138.Search in Google Scholar PubMed

10. Bartoś, B., Majkowska, A., Krajewski, S., Bilewicz, A. New separation method of no-carrier-added 47Sc from titanium targets. Radiochim. Acta 2012, 100, 457; https://doi.org/10.1524/ract.2012.1938.Search in Google Scholar

11. Müller, C., Bunka, M., Haller, S., Köster, U., Groehn, V., Bernhardt, P., van der Meulen, N., Türler, A., Schibli, R. Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J. Nucl. Med. 2014, 55, 1658; https://doi.org/10.2967/jnumed.114.141614.Search in Google Scholar PubMed

12. Attallah, M. F., Mohamed, G. Y., Breky, M. M. E. Production and subsequent separation of 47Sc of nuclear medicine applications using neutron-induced reactions on different natural targets. J. Radioanal. Nucl. Chem. 2022, 331, 1723; https://doi.org/10.1007/s10967-022-08232-1.Search in Google Scholar

13. Attallah, M. F., Mohamed, G. Y., Breky, M. M. E. Correction to: production and subsequent separation of 47Sc of nuclear medicine applications using neutron-induced reactions on different natural targets. J. Radioanal. Nucl. Chem. 2022, 331, 3207; https://doi.org/10.1007/s10967-022-08346-6.Search in Google Scholar

14. Kolsky, K., Joshi, V., Mausner, L., Srivastava, S. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl. Radiat. Isot. 1998, 49, 1541; https://doi.org/10.1016/s0969-8043(98)00016-5.Search in Google Scholar PubMed

15. Minegishi, K., Nagatsu, K., Fukada, M., Suzuki, H., Ohya, T., Zhang, M.-R. Production of scandium-43 and-47 from a powdery calcium oxide target via the nat/44Ca (α, x)-channel. Appl. Radiat. Isot. 2016, 116, 8; https://doi.org/10.1016/j.apradiso.2016.07.017.Search in Google Scholar PubMed

16. Srivastava, S. C., Mausner, L. F. Therapeutic radionuclides: production, physical characteristics, and applications, therapeutic nuclear medicine; Springer-Verlag: Berlin, 2013; pp. 11–50.10.1007/174_2012_782Search in Google Scholar

17. Freiser, H. Solvent extraction in radiochemical separations. Annu. Rev. Nucl. Sci. 1959, 9; https://doi.org/10.1146/annurev.ns.09.120159.001253.Search in Google Scholar

18. Bao, S., Hawker, W., Vaughan, J. Scandium loading on chelating and solvent impregnated resin from sulfate solution. Solvent Extr. Ion Exch. 2018, 36, 100; https://doi.org/10.1080/07366299.2017.1412917.Search in Google Scholar

19. Jafari, A., Aboudzadeh, M. R., Sharifian, M., Sadeghi, M., Rahiminezhad, A., Alirezapour, B., Rajabifar, S. Cyclotron-based production of the theranostic radionuclide scandium-47 from titanium target. Nucl. Instrum. Methods Phys. Res.: Accel. Spectrom. Detect. Assoc. Equip. 2020, 961, 163643; https://doi.org/10.1016/j.nima.2020.163643.Search in Google Scholar

20. Pietrelli, L., Mausner, L., Kolsky, K. Separation of carrier-free 47Sc from titanium targets. J. Radioanal. Nucl. Chem. 1992, 157, 335; https://doi.org/10.1007/bf02047448.Search in Google Scholar

21. Das, M., Sarkar, B., Ramamoorthy, N. Yields of some radioisotopes formed in α-particle induced reactions on titanium and recovery of scandium radionuclides. Radiochim. Acta 1990, 50, 135; https://doi.org/10.1524/ract.1990.50.3.135.Search in Google Scholar

22. Lahiri, S., Banerjee, S., Das, N. LLX separation of carrier-free 47Sc, 48V and 48, 49, 51Cr produced in α-particle activated titanium with HDEHP. Appl. Radiat. Isot. 1996, 47, 1; https://doi.org/10.1016/0969-8043(95)00246-4.Search in Google Scholar

23. Rydberg, J., Musikas, C., Choppin, G. R. Principles and practices of solvent extraction; M. Dekker: New York, 1992.Search in Google Scholar

24. Attallah, M. F., Gizawy, M. A., Shamsel-Din, H. A., Mohamed, N., Ali, A. M. Assessment of reactor-produced 199Au as a promising theranostic radionuclide and subsequent separation from platinum target. J. Radioanal. Nucl. Chem. 2020, 325, 447; https://doi.org/10.1007/s10967-020-07257-8.Search in Google Scholar

25. Deng, Z., Wei, C., Li, M., Li, C., Fan, G., Ge, H. Technology of extracting vanadium and removing iron from stone-coal oxygen pressure acid-leaching solution. Chin. J. Rare Met. 2009, 33, 290.Search in Google Scholar

26. Gao, L.-K., Rao, B., Dai, H.-X., Hong, Z., Xie, H.-Y. Separation and extraction of scandium and titanium from a refractory anatase lixivium by solvent extraction with D2EHPA and primary amine N1923. J. Chem. Eng. Jpn. 2019, 52, 822; https://doi.org/10.1252/jcej.18we347.Search in Google Scholar

27. Cao, X., Zhang, T-a., Zhang, W., Lv, G. Solvent extraction of Sc (III) by D2EHPA/TBP from the leaching solution of vanadium slag. Metals 2020, 10, 790; https://doi.org/10.3390/met10060790.Search in Google Scholar

28. Biswas, R., Banu, R., Islam, M. Some physico-chemical properties of D2EHPA: Part 2. Distribution, dimerization and acid dissociation constants in n-hexane/1 M (Na+, H+) SO42− system, interfacial adsorption and excess properties. Hydrometallurgy 2003, 69, 157; https://doi.org/10.1016/s0304-386x(02)00212-8.Search in Google Scholar

29. Iio, K., Takahashi, K., Takeuchi, H. Solvent extraction of Titanium (IV) from nitric acid solution by di (2-ethylhexyl) phosphoric acid. Solvent Extr. Ion Exch. 1991, 9, 27; https://doi.org/10.1080/07366299108918040.Search in Google Scholar

30. Sato, T., Nakamura, T. The extraction of titanium (IV) and aluminium (III) from sulphuric acid solutions by di-(2-ethylhexyl)-phosphoric acid. Anal. Chim. Acta 1975, 76, 401; https://doi.org/10.1016/s0003-2670(01)85412-x.Search in Google Scholar

31. Rizk, H., El-Nadi, Y., El-Hefny, N. Extractive separation of scandium from strongly alkaline solution by quaternary ammonium salt. Solvent Extr. Ion Exch. 2020, 38, 350; https://doi.org/10.1080/07366299.2020.1729327.Search in Google Scholar

32. Islam, M., Biswas, R., Mustafa, C. Solvent extraction of Ti (IV), Fe (III) and Fe (II) from acidic sulfate medium with di-o-tolyl phosphoric acid-benzene-hexan-1-ol system: a separation and mechanism study. Hydrometallurgy 1985, 13, 365; https://doi.org/10.1016/0304-386x(85)90023-4.Search in Google Scholar

33. Singh, R. K., Dhadke, P. M. Extraction and separation of titanium (IV) with D2EHPA and PC-88A from aqueous perchloric acid solutions. J. Serb. Chem. Soc. 2002, 67, 507; https://doi.org/10.2298/jsc0207507s.Search in Google Scholar

34. Sole, K. C. Recovery of titanium from the leach liquors of titaniferous magnetites by solvent extraction: Part 1. Review of the literature and aqueous thermodynamics. Hydrometallurgy 1999, 51, 239; https://doi.org/10.1016/s0304-386x(98)00090-5.Search in Google Scholar

35. Fontana, D., Kulkarni, P., Pietrelli, L. Extraction of titanium (IV) from acidic media by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy 2005, 77, 219; https://doi.org/10.1016/j.hydromet.2005.01.003.Search in Google Scholar

36. Ritcey, G. M., Ashbrook, A. Solvent extraction. principles and applications to process metallurgy. Part I; Elsevier: Amsterdam, 1984.Search in Google Scholar

37. Jia, Q., Tong, S., Li, Z., Zhou, W., Li, H., Meng, S. Solvent extraction of rare earth elements with mixtures of sec-octylphenoxy acetic acid and bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid. Separ. Purif. Technol. 2009, 64, 345; https://doi.org/10.1016/j.seppur.2008.10.024.Search in Google Scholar

38. Hualei, Z., Dongyan, L., Yajun, T., Yunfa, C. Extraction of scandium from red mud by modified activated carbon and kinetics study. Rare Met. 2008, 27, 223; https://doi.org/10.1016/s1001-0521(08)60119-9.Search in Google Scholar

39. Zhu, L., Liu, Y., Chen, J., Liu, W. Extraction of scandium (III) using ionic liquids functionalized solvent impregnated resins. J. Appl. Polym. Sci. 2011, 120, 3284; https://doi.org/10.1002/app.33501.Search in Google Scholar

40. Biswas, R., Begum, D. Solvent extraction of tetravalent titanium from chloride solution by di-2-ethylhexyl phosphoric acid in kerosene. Hydrometallurgy 1998, 49, 263; https://doi.org/10.1016/s0304-386x(98)00031-0.Search in Google Scholar

41. Biswas, R., Hanif, M., Bari, M. Kinetics of forward extraction of manganese (II) from acidic chloride medium by D2EHPA in kerosene using the single drop technique. Hydrometallurgy 1996, 42, 399; https://doi.org/10.1016/0304-386x(95)00102-m.Search in Google Scholar

42. Biswas, R., Zaman, M., Islam, M. Extraction of TiO2+ from 1 M (Na+, H+) SO42− by D2EHPA. Hydrometallurgy 2002, 63, 159; https://doi.org/10.1016/s0304-386x(01)00222-5.Search in Google Scholar

43. Omelchuk, K., Szczepański, P., Shrotre, A., Haddad, M., Chagnes, A. Effects of structural changes of new organophosphorus cationic exchangers on a solvent extraction of cobalt, nickel and manganese from acidic chloride media. RSC Adv. 2017, 7, 5660; https://doi.org/10.1039/c6ra21695a.Search in Google Scholar

44. Nayl, A. A., Aly, H. F. Extraction equilibria and kinetics of Ti (IV) from leached chloride liquors of ilmenite. Rare Met. 2017, 36, 676; https://doi.org/10.1007/s12598-015-0614-2.Search in Google Scholar

45. Das, S., Behera, S., Murmu, B., Mohapatra, R., Mandal, D., Samantray, R., Parhi, P., Senanayake, G. Extraction of scandium (III) from acidic solutions using organo-phosphoric acid reagents: a comparative study. Separ. Purif. Technol. 2018, 202, 248; https://doi.org/10.1016/j.seppur.2018.03.023.Search in Google Scholar

46. Islam, F., Biswas, R. Kinetics of solvent extraction of metal ions with HDEHP-I Kinetics and mechanism of solvent extraction of Ti (IV) from acidic aqueous solutions with bis-(2-ethyl hexyl) phosphoric acid in benzene. J. Inorg. Nucl. Chem. 1978, 40, 559; https://doi.org/10.1016/0022-1902(78)80442-4.Search in Google Scholar

47. Poskanzer, A., Foreman, B.Jr. A summary of TTA extraction coefficients. J. Radioanal. Nucl. Chem. 1961, 16, 323; https://doi.org/10.1016/0022-1902(61)80507-1.Search in Google Scholar

48. Wang, W., Pranolo, Y., Cheng, C. Y. Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 2011, 108, 100; https://doi.org/10.1016/j.hydromet.2011.03.001.Search in Google Scholar

49. Mahmoudi, S., Babakhani, A., Noori, M., Azizitorghabeh, A., Rashchi, F. Synergistic extraction and separation of cobalt and lithium using D2EHPA and CYANEX 272. Min. Metall. Explor. 2022, 39, 1; https://doi.org/10.1007/s42461-021-00531-7.Search in Google Scholar

50. Azizitorghabeh, A., Rashchi, F., Babakhani, A. Stoichiometry and structural studies of Fe (III) and Zn (II) solvent extraction using D2EHPA/TBP. Separ. Purif. Technol. 2016, 171, 197; https://doi.org/10.1016/j.seppur.2016.07.037.Search in Google Scholar

51. Zhang, W., Feng, D., Xie, X., Tong, X., Du, Y., Cao, Y. Solvent extraction and separation of light rare earths from chloride media using HDEHP-P350 system. J. Rare Earths 2022, 40, 328; https://doi.org/10.1016/j.jre.2021.05.003.Search in Google Scholar

52. Guimarães, A. S., Mansur, M. B. Solvent extraction of calcium and magnesium from concentrate nickel sulfate solutions using D2HEPA and Cyanex 272 extractants. Hydrometallurgy 2017, 173, 91; https://doi.org/10.1016/j.hydromet.2017.08.005.Search in Google Scholar

53. John, K. S., Rao, T. P., Ramamohan, T., Reddy, M. Solvent extraction of tetravalent titanium from acidic chloride solutions by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy 1999, 53, 245; https://doi.org/10.1016/s0304-386x(99)00049-3.Search in Google Scholar

54. Das, Ν., Banerjee, S., Lahiri, S. Sequential separation of carrier free 47Sc, 48V and 48, 49, 51Cr from α-particle activated titanium with TOA. Radiochim. Acta 1995, 69, 61; https://doi.org/10.1524/ract.1995.69.1.61.Search in Google Scholar

55. Gizawy, M. A., Shamsel-Din, H. A., Attallah, M. F. Purification development of carrier-free 47Sc produced from natTi (n, p) reaction for radiotheranostic applications. J. Radioanal. Nucl. Chem. 2021, 328, 1225.10.1007/s10967-021-07745-5Search in Google Scholar

56. Aly, H. F., El-Haggan, M. A. Production of carrier-free scandium radioisotopes from a neutron-irradiated potassium titanium oxalate target. Microchim. Acta 1971, 59, 4; https://doi.org/10.1007/bf01216875.Search in Google Scholar

57. Walczak, R., Gawęda, W., Dudek, J., Choiński, J., Bilewicz, A. Influence of metal ions on the 44Sc-labeling of DOTATATE. J. Radioanal. Nucl. Chem. 2019, 322, 249; https://doi.org/10.1007/s10967-019-06700-9.Search in Google Scholar

Received: 2022-08-18
Revised: 2022-12-25
Accepted: 2022-12-26
Published Online: 2023-01-11
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2022-0082/html
Scroll to top button