Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 14, 2022

Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)

  • Yongheum Jo , Jun-Yeop Lee and Jong-Il Yun EMAIL logo
From the journal Radiochimica Acta

Abstract

This review provides an overview of the chemical thermodynamics on ternary earth-alkaline metal-actinyl-tricarbonate systems (i.e., M-AnO2-CO3, M = Mg, Ca, Sr, and Ba) and discusses the aqueous complexation and dissolution/precipitation equilibrium for these ternary aqueous systems. The aqueous ternary U(VI) carbonate species are remarkably predominant in the U(VI) speciation under natural environmental conditions at ambient temperature and moderate ionic strength condition, while the omnipresence, according to recent studies, would be hindered by an increase in temperature and ionic strength. With respect to the ternary solid U(VI) carbonate phases, most of the previously reported data have been focused on physical properties and thus a notable lack of available data on chemical thermodynamic properties, i.e., solubility product constant, has been identified. Nevertheless, substantial influences of these ternary M-AnO2-CO3 systems on the aqueous speciation and the solubility limiting phase under the natural environmental condition are taken into account according to the thermodynamic calculation. The authors point out that the completeness of the chemical thermodynamic model for predicting the chemical behavior of actinides in nature can be further improved on the basis of a sufficient understanding of ternary M-AnO2-CO3 systems.


Corresponding author: Jong-Il Yun, Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail:
Yongheum Jo and Jun-Yeop Lee contributed equally to this work and should be regarded as co-first authors.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021M2E1A1085204, NRF-2016M2B2B1945252, NRF-2017M2A8A5014801) and Korea Institute of Energy Technology Evaluation and Planning (No. 20193210100110).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bernhard, G., Geipel, G., Brendler, V., Nitsche, H. Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 1996, 74, 87–92.10.1524/ract.1996.74.special-issue.87Search in Google Scholar

2. Prat, O., Vercouter, T., Ansoborlo, E., Fichet, P., Perret, P., Kurttio, P., Salonen, L. Uranium speciation in drinking water from drilled wells in southern finland and its potential links to health effects. Environ. Sci. Technol. 2009, 43, 3941–3946.10.1021/es803658eSearch in Google Scholar PubMed

3. Lee, J.-Y., Yun, J.-I. Formation of ternary CaUO2(CO3)32− and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans. 2013, 42, 9862–9869.10.1039/c3dt50863cSearch in Google Scholar PubMed

4. Tullborg, E.-L., Suksi, J., Geipel, G., Krall, L., Auqué, L., Gimeno, M., Puigdomenech, I. The occurrences of Ca2UO2(CO3)3 complex in Fe(II) containing deep groundwater at Forsmark, eastern Sweden. Procedia Earth Planet. Sci. 2017, 17, 440–443.10.1016/j.proeps.2016.12.111Search in Google Scholar

5. Reeves, B., Beccia, M. R., Solari, P. L., Smiles, D. E., Shuh, D. K., Berthomieu, C., Marcellin, D., Bremond, N., Mangialajo, L., Pagnotta, S., Monfort, M., Moulin, C., Den Auwer, C. Uranium uptake in paracentrotus lividus sea urchin, accumulation and speciation. Environ. Sci. Technol. 2019, 53, 7974–7983.10.1021/acs.est.8b06380Search in Google Scholar PubMed

6. Grenthe, I., Gaona, X., Plyasunov, A. V., Rao, L., Runde, W. H., Grambow, B., Konings, R. J. M., Smith, A. L., Moore, E. E. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; OECD Nuclear Energy Agency Data Bank, Ed.; OECD Publications: Paris, France, 14, 2020.Search in Google Scholar

7. Brooks, S. C., Fredrickson, J. K., Carroll, S. L., Kennedy, D. W., Zachara, J. M., Plymale, A. E., Kelly, S. D., Kemner, K. M., Fendorf, S. Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 2003, 37, 1850–1858.10.1021/es0210042Search in Google Scholar PubMed

8. Wan, J., Tokunaga, T. K., Brodie, E., Wang, Z., Zheng, Z., Herman, D., Hazen, T. C., Firestone, M. K., Sutton, S. R. Reoxidation of bioreduced uranium under reducing conditions. Environ. Sci. Technol. 2005, 39, 6162–6169.10.1021/es048236gSearch in Google Scholar PubMed

9. Zheng, Z., Tokunaga, T. K., Wan, J. Influence of calcium carbonate on U(VI) sorption to soils. Environ. Sci. Technol. 2003, 37, 5603–5608.10.1021/es0304897Search in Google Scholar PubMed

10. Fox, P. M., Davis, J. A., Zachara, J. M. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochem. Cosmochim. Acta 2006, 70, 1379–1387.10.1016/j.gca.2005.11.027Search in Google Scholar

11. Stewart, B. D., Mayes, M. A., Fendorf, S. Impact of uranyl−calcium−carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ. Sci. Technol. 2010, 44, 928–934.10.1021/es902194xSearch in Google Scholar PubMed

12. Kerisit, S., Liu, C. Diffusion and adsorption of uranyl carbonate species in nanosized mineral fractures. Environ. Sci. Technol. 2012, 46, 1632–1640.10.1021/es2027696Search in Google Scholar PubMed

13. Smith, J. L. Two new minerals, - medjidite (sulphate of uranium and lime) - liebigite (carbonate of uranium and lime). Am. J. Sci. Arts 1848, 5, 336–338.Search in Google Scholar

14. Evans, H. T.Jr., Frondel, C. Studies of uranium minerals (II): liebigite and uranothallite. Am. Mineral. 1950, 35, 251–254.Search in Google Scholar

15. Meyrowitz, R., Ross, D. R., Weeks, A. D., Synthesis of liebigite, U. S. Geological Survey Professional Papers Nr. 475-B. 1963; http://pubs.er.usgs.gov/publication/pp475B.Search in Google Scholar

16. Appleman, D. Crystal structure of liebigite. Bull. Geol. Soc. Am. 1956, 67, 1666.Search in Google Scholar

17. Mereiter, K. The crystal structure of Liebigite, Ca2UO2(CO3)3∼11H2O. Mineral. Petrol. 1982, 30, 277–288.10.1007/BF01087173Search in Google Scholar

18. Axelrod, J. M., Grimaldi, F. S., Milton, C., Murata, K. J. The uranium minerals from the Hillside mine, Yavapai County, Arizona. Am. Mineral. 1951, 36, 1–22.Search in Google Scholar

19. Coda, A., Della Giusta, A., Tazzoli, V. The structure of synthetic andersonite, Na2Ca[UO2(CO3)3]·xH2O (x∼5·6). Acta Crystallogr. B 1981, 37, 1496–1500.10.1107/S0567740881006432Search in Google Scholar

20. Mayer, H., Mereiter, K. Synthetic bayleyite, Mg2[UO2(CO3)3]18H2O: thermochemistry, crystallography and crystal structure. Tschermaks mineralogische und petrographische Mitteilungen 1986, 35, 133–146.10.1007/BF01140845Search in Google Scholar

21. Mereiter, K. Synthetic Swartzite, CaMg[UO2(CO3)3]·12H2O, and its Strontium Analogue, SrMg[UO2(CO3)3]·12H2O: Crystallography and Crystal Structures; Neues Jahrbuch fur Mineralogie: Monatshefte, 1986; pp. 481–492.Search in Google Scholar

22. Davies, C. W. Ion Association; Butterworths: Washington, D.C., 1962.Search in Google Scholar

23. Ciavatta, L. The specific interaction theory in evaluating ionic equilibria. Ann. Chim.(Rome) 1980, 70, 551.Search in Google Scholar

24. Grenthe, I., Mompean, F., Spahiu, K., Wanner, H. Guidelines for the Extrapolation to Zero Ionic Strength; OECD Nuclear Energy Agency Data Bank, Ed.; OECD Publications: Paris, France, 2013.Search in Google Scholar

25. Puigdomènech, I., Rard, J. A., Plyasunov, A. V., Grenthe, I. Temperature Corrections to Thermodynamic Data and Enthalpy Calculations; OECD Nuclear Energy Agency Data Bank, Ed.; OECD Publications: Paris, France, 1999.Search in Google Scholar

26. Grenthe, I., Puigdomenech, I. Modelling in Aquatic Chemistry; OECD-NEA: Paris, France, 1997.Search in Google Scholar

27. Kalmykov, S. N., Choppin, G. R. Mixed Ca2+/UO22+/CO32− complex formation at different ionic strengths. Radiochim. Acta 2000, 88, 603–608.10.1524/ract.2000.88.9-11.603Search in Google Scholar

28. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H. Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim. Acta 2001, 89, 511–518.10.1524/ract.2001.89.8.511Search in Google Scholar

29. Dong, W., Brooks, S. C. Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ. Sci. Technol. 2006, 40, 4689–4695.10.1021/es0606327Search in Google Scholar PubMed

30. Endrizzi, F., Rao, L. Chemical speciation of uranium(VI) in marine environments: Complexation of calcium and magnesium ions with [(UO2)(CO3)3]4− and the effect on the extraction of uranium from seawater. Chem. Eur J. 2014, 20, 14499–14506.10.1002/chem.201403262Search in Google Scholar PubMed

31. Jo, Y., Kirishima, A., Kimuro, S., Kim, H.-K., Yun, J.-I. Formation of CaUO2(CO3)32− and Ca2UO2(CO3)3(aq) complexes at variable temperatures (10–70 °C). Dalton Trans. 2019, 48, 6942–6950.10.1039/C9DT01174ASearch in Google Scholar

32. Helgeson, H. C. Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. J. Phys. Chem. 1967, 71, 3121–3136.10.1021/j100869a002Search in Google Scholar

33. Shang, C., Reiller, P. E. Determination of formation constants and specific ion interaction coefficients for CanUO2(CO3)3(4−2n)− complexes in NaCl solution by time-resolved laser-induced luminescence spectroscopy. Dalton Trans. 2020, 49, 466–481.10.1039/C9DT03543ESearch in Google Scholar

34. Shang, C., Reiller, P. E., Vercouter, T. Spectroluminescence measurements of the stability constants of CanUO2(CO3)3(4−2n)− complexes in NaClO4 medium and the investigation of interaction effects. Dalton Trans. 2020, 49, 15443–15460.10.1039/D0DT03164JSearch in Google Scholar

35. Maia, F. M. S., Ribet, S., Bailly, C., Grivé, M., Madé, B., Montavon, G. Evaluation of thermodynamic data for aqueous Ca-U(VI)-CO3 species under conditions characteristic of geological clay formation. Appl. Geochem. 2021, 124, 104844.10.1016/j.apgeochem.2020.104844Search in Google Scholar

36. Shang, C., Reiller, P. E. Effect of temperature on the complexation of triscarbonatouranyl(VI) with calcium and magnesium in NaCl aqueous solution. Dalton Trans. 2021, 50, 17165–17180.10.1039/D1DT03204FSearch in Google Scholar

37. Parkhurst, D. L., Appelo, C. A. J. Description of input and examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43., 497 p. 2013. http://pubs.er.usgs.gov/publication/tm6A43.10.3133/tm6A43Search in Google Scholar

38. Kinniburgh, D. G., Cooper, D. M. PhreePlot: Creating Graphical Output with PHREEQC, 2011. http://www.phreeplot.org.Search in Google Scholar

39. Plummer, L. N., Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochem. Cosmochim. Acta 1982, 46, 1011–1040.10.1016/0016-7037(82)90056-4Search in Google Scholar

40. Neiss, J., Stewart, B. D., Nico, P. S., Fendorf, S. Speciation-dependent microbial reduction of uranium within iron-Coated sands. Environ. Sci. Technol. 2007, 41, 7343–7348.10.1021/es0706697Search in Google Scholar PubMed

41. Stewart, B. D., Neiss, J., Fendorf, S. Quantifying constraints imposed by Calcium and iron on bacterial reduction of uranium(VI). J. Environ. Qual. 2007, 36, 363–372.10.2134/jeq2006.0058Search in Google Scholar PubMed

42. Sheng, L., Szymanowski, J., Fein, J. B. The effects of uranium speciation on the rate of U(VI) reduction by Shewanella oneidensis MR-1. Geochem. Cosmochim. Acta 2011, 75, 3558–3567.10.1016/j.gca.2011.03.039Search in Google Scholar

43. Xie, J., Wang, J., Lin, J. New insights into the role of calcium in the bioreduction of uranium(VI) under varying pH conditions. J. Hazard Mater. 2021, 411, 125140.10.1016/j.jhazmat.2021.125140Search in Google Scholar PubMed

44. Dong, W., Brooks, S. C. Formation of Aqueous MgUO2(CO3)32− complex and uranium anion exchange mechanism onto an exchange resin. Environ. Sci. Technol. 2008, 42, 1979–1983.10.1021/es0711563Search in Google Scholar PubMed

45. Wu, W., Priest, C., Zhou, J., Peng, C., Liu, H., Jiang, D.-e. Solvation of the Ca2UO2(CO3)3 complex in seawater from classical molecular dynamics. J. Phys. Chem. B 2016, 120, 7227–7233.10.1021/acs.jpcb.6b05452Search in Google Scholar PubMed

46. Li, B., Zhou, J., Priest, C., Jiang, D.-e. Effect of salt on the uranyl binding with carbonate and calcium ions in aqueous solutions. J. Phys. Chem. B 2017, 121, 8171–8178.10.1021/acs.jpcb.7b04449Search in Google Scholar PubMed

47. Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M. H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Vol. 5; Chemical Thermodynamics: Amsterdam, 2003.Search in Google Scholar

48. Geipel, G., Amayri, S., Bernhard, G. Mixed complexes of alkaline earth uranyl carbonates: a laser-induced time-resolved fluorescence spectroscopic study. Spectrochim. Acta Mol. Biomol. Spectrosc. 2008, 71, 53–58.10.1016/j.saa.2007.11.007Search in Google Scholar PubMed

49. Lee, J.-Y., Vespa, M., Gaona, X., Dardenne, K., Rothe, J., Rabung, T., Altmaier, M., Yun, J.-I. Formation, stability and structural characterization of ternary MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) complexes. Radiochim. Acta 2017, 105, 171–185.10.1515/ract-2016-2643Search in Google Scholar

50. Jo, Y., Kim, H.-K., Yun, J.-I. Complexation of UO2(CO3)34− with Mg2+ at varying temperatures and its effect on U(VI) speciation in groundwater and seawater. Dalton Trans. 2019, 48, 14769–14776.10.1039/C9DT03313KSearch in Google Scholar PubMed

51. Shang, C., Reiller, P. E. The determination of the thermodynamic constants of MgUO2(CO3)32− complex in NaClO4 and NaCl media by time-resolved luminescence spectroscopy, and applications in different geochemical contexts. Dalton Trans. 2021, 50, 4363–4379.10.1039/D0DT04124FSearch in Google Scholar

52. Priest, C., Tian, Z., Jiang, D.-e. First-principles molecular dynamics simulation of the Ca2UO2(CO3)3 complex in water. Dalton Trans. 2016, 45, 9812–9819.10.1039/C5DT04576BSearch in Google Scholar

53. Oher, H., Vercouter, T., Réal, F., Shang, C., Reiller, P. E., Vallet, V. Influence of alkaline earth metal ions on structures and luminescent properties of NamMnUO2(CO3)3(4–m–2n)– (M = Mg, Ca; m, n = 0–2): time-resolved fluorescence spectroscopy and Ab Initio studies. Inorg. Chem. 2020, 59, 15036–15049.10.1021/acs.inorgchem.0c01986Search in Google Scholar PubMed

54. Balasubramanian, K., Chaudhuri, D. Computational modeling of environmental plutonyl mono-, di- and tricarbonate complexes with Ca counterions: structures and spectra: PuO2(CO3)22−, PuO2(CO3)2Ca, and PuO2(CO3)3Ca3. Chem. Phys. Lett. 2008, 450, 196–202.10.1016/j.cplett.2007.11.012Search in Google Scholar

55. Jo, Y., Cho, H.-R., Yun, J.-I. Visible-NIR absorption spectroscopy study of the formation of ternary plutonyl(VI) carbonate complexes. Dalton Trans. 2020, 49, 11605–11612.10.1039/D0DT01982HSearch in Google Scholar

56. Ikeda-Ohno, A., Tsushima, S., Takao, K., Rossberg, A., Funke, H., Scheinost, A. C., Bernhard, G., Yaita, T., Hennig, C. Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study. Inorg. Chem. 2009, 48, 11779–11787.10.1021/ic901838rSearch in Google Scholar PubMed

57. Panasci, A. F., Harley, S. J., Zavarin, M., Casey, W. H. Kinetic studies of the [NpO2(CO3)3]4– ion at alkaline conditions using 13C NMR. Inorg. Chem. 2014, 53, 4202–4208.10.1021/ic500314vSearch in Google Scholar PubMed

58. Alwan, A. K., Williams, P. A. The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group. Mineral. Mag. 1980, 43, 665–667.10.1180/minmag.1980.043.329.17Search in Google Scholar

59. Gorman-Lewis, D., Burns, P. C., Fein, J. B. Review of uranyl mineral solubility measurements. J. Chem. Therm. 2008, 40, 335–352.10.1016/j.jct.2007.12.004Search in Google Scholar

60. Endrizzi, F., Leggett, C. J., Rao, L. Scientific basis for efficient extraction of uranium from seawater. I: understanding the chemical speciation of uranium under seawater conditions. Ind. Eng. Chem. Res. 2016, 55, 4249–4256.10.1021/acs.iecr.5b03679Search in Google Scholar

61. Barner, H. E., Scheuerman, R. V. Handbook of Thermochemical Data for Compounds and Aqueous Species, 1978.Search in Google Scholar

62. Grenthe, I., Fuger, J., Konings, R. J., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H. Chemical Thermodynamics of Uranium; OECD Nuclear Energy Agency Data Bank, Ed.; OECD Publications: Paris, 1, 1992.Search in Google Scholar

63. O’Brien, T. J., Williams, P. A. The aqueous chemistry of uranium minerals. 4. Schröckingerite, grimselite, and related alkali uranyl carbonates. Mineral. Mag. 1983, 47, 69–73.10.1180/minmag.1983.047.342.12Search in Google Scholar

64. Vochten, R., van Haverbeke, L., van Springel, K. Synthesis of liebigite and andersonite, and study of their thermal behavior and luminescence. Can. Mineral. 1993, 31, 167–171.Search in Google Scholar

65. Vochten, R., Vanhaverbeke, L., Vanspringel, K., Blaton, N., Peeters, O. The structure and physicochemical characteristics of a synthetic phase compositionally intermediate between liebigite and andersonite. Can. Mineral. 1994, 32, 553–561.Search in Google Scholar

66. Amayri, S. Synthese Charakterisierung und Löslichkeit von Erdalkaliuranylcarbonaten M2[UO2(CO3)3]·xH2O; MSrBa. Ph.D. Thesis, Technischen Universität Dresden, Dresden, 2002.Search in Google Scholar

67. Lee, J.-Y., Amayri, S., Montoya, V., Fellhauer, D., Gaona, X., Altmaier, M. Solubility and stability of liebigite, Ca2UO2(CO3)3·10H2O(cr), in dilute to concentrated NaCl and NaClO4 solutions at T = 22–80 °C. Appl. Geochem. 2019, 111, 104374.10.1016/j.apgeochem.2019.104374Search in Google Scholar

Received: 2021-11-30
Accepted: 2022-06-22
Published Online: 2022-07-14
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2021-1133/html
Scroll to top button