Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 10, 2022

Separation of 103Pd from a Rh target using an alloying pretreatment with bismuth

  • Tomoyuki Ohya EMAIL logo , Kotaro Nagatsu , Katsuyuki Minegishi and Ming-Rong Zhang
From the journal Radiochimica Acta

Abstract

Palladium-103 is one of the most attractive radionuclides for internal radiotherapy. It is not only used as a brachytherapy seed but is also a feasible candidate for Auger electron therapy and gold-nanoparticle therapy. In this study, we propose a new method for the separation of 103Pd from a rhodium target to obtain no-carrier-added 103Pd. Rhodium powder target was irradiated under the following conditions: proton, 50 MeV, 1–3 μA, 1–4 h for the separation study; and H2 +, 24 MeV, 5 μA, 1 h to produce 103Pd. The irradiated target was pretreated using an alloying reaction between Rh and Bi on a hotplate at 500 °C. Rhodium in the chemical form of a Bi–Rh compound could then be dissolved with nitric acid and 103Pd was extracted using dimethylglyoxime as an extractant. The target rhodium was recycled using sodium tetrahydroborate (NaBH4). We obtained 103Pd with a yield of 87%. The activity of the product was 26 ± 2 MBq at the end of bombardment (EOB), and the radionuclidic purity of 103Pd was greater than 99%. The decontamination factors of rhodium and bismuth in the 103Pd product were estimated to be greater than 104 and 105, respectively. The target rhodium was recycled with a yield of 91% with a trace of bismuth (9 μg/50 mg Rh). The total separation time for 103Pd was within 3.5 h.


Corresponding author: Tomoyuki Ohya, Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences (iQMS), National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan, E-mail:

Acknowledgments

We would like to thank our cyclotron staff for their excellent operation of the NIRS-AVF-930 cyclotron and the technical support. We also acknowledge the speedy and kindly support of the QST librarians. We thank Sarah Dodds, PhD, from Edanz (https://jp.edanz.com/ac), for editing a draft of this manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Production Techniques and Quality Control of Sealed Radioactive Sources of Palladium-103, Iodine-125, Iridium-192 and Ytterbium-169. IAEA, VIENNA, 2006 IAEA-TECDOC-1512.Search in Google Scholar

2. Kassis, A. I., Adelstein, S. J. Radiobiologic principles in radionuclide therapy. J. Nucl. Med. 2005, 46, 4S.Search in Google Scholar

3. Sastry, K. S. R. Biological effects of the Auger emitter iodine-125: a review. Report No. 1 of AAPM nuclear medicine task group No. 6. Med. Phys. 1992, 19, 1361; https://doi.org/10.1118/1.596926.Search in Google Scholar

4. Knapp, F. F., Dash, A. Radiopharmaceuticals for Therapy; Springer, New Delhi, 2016; https://doi.org/10.1007/978-81-322-2607-9: Auger electron-based radionuclide therapy.10.1007/978-81-322-2607-9Search in Google Scholar

5. Drobnik, M., Drobnik, C., Bolenbaugh, D., Dahl, P. S., Pahigianis, I., Romanoff, S. Carrier-free 103Pd brachytherapy seeds: Publication date Mar 9, 2006. United States Patent, 7,988,612.Search in Google Scholar

6. Li, Z-Y., Gao, H-B., Deng, X-S., Zhou, L., Zhang, W-H., Han, L-G., Jin, X-H., Cui, H-P. Preparation of 103Pd brachytherapy seeds by electrolysis plating of 103Pd onto carbon bars. Appl. Radiat. Isot. 2015, 103, 128; https://doi.org/10.1016/j.apradiso.2015.05.020.Search in Google Scholar

7. Laprise-Pelletier, M., Lagueux, J., Côté, M-F., LaGrange, T., Fortin, M-A. Low-dose prostate cancer brachytherapy with radioactive palladium-gold nanoparticles. Adv. Healthcare Mater 2017, 6, 1601120; https://doi.org/10.1002/adhm.201601120.Search in Google Scholar

8. Lechtman, E., Chattopadhyay, N., Cai, Z., Mashouf, S., Reilly, R., Pignol, J. P. Implications on clinical scenario of gold nanoparticle radiosensitization in regard to photon energy, nanoparticle size, concentration and location. Phys. Med. Biol. 2011, 56, 4631; https://doi.org/10.1088/0031-9155/56/15/001.Search in Google Scholar

9. Tárkányi, F., Hermanne, A., Király, B., Takács, S., Ditrói, F., Csikai, J., Fenyvesi, A., Uddin, M. S., Hagiwara, M., Baba, M., Ido, T., Shubin, Y. N., Ignatyuk, A. V. New cross-sections for production of 103Pd; review of charged particle production routes. Appl. Radiat. Isot. 2009, 67, 1574.10.1016/j.apradiso.2009.03.100Search in Google Scholar

10. Hussain, M., Sudar, S., Aslam, M. N., Shah, H. A., Ahmad, R., Malik, A. A., Qaim, S. M. A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2009, 67, 1842; https://doi.org/10.1016/j.apradiso.2009.06.010.Search in Google Scholar

11. Skakun, Y., Qaim, S. M. Measurement of excitation functions of helion-induced reactions on enriched Ru targets for production of medically important 103Pd and 101mRh and some other radionuclides. Appl. Radiat. Isot. 2008, 66, 653; https://doi.org/10.1016/j.apradiso.2007.11.013.Search in Google Scholar

12. Harper, P. V., Lathrop, K., Need, J. L. Thick target yield and excitation function for the reaction Rh103(p, n)Pd103. ORNL central files number 61-5-67, 1961.Search in Google Scholar

13. Hermanne, A., Sonck, M., Fenyvesi, A., Daraban, L. Study on production of 103Pd and characterisation of possible contaminants in the proton irradiation of 103Rh up to 28 MeV. Nucl. Instrum. Methods Phys. Res. B 2000, 170, 281; https://doi.org/10.1016/s0168-583x(00)00190-7.Search in Google Scholar

14. Lagunas-solar, M. C., Avila, M. J., Johnson, P. C. Targetry and radiochemical methods for the simultaneous cyclotron production of no-carrier-added radiopharmaceutical-quality 100Pd, 97Ru and 101mRh. Appl. Radiat. Isot. 1987, 38, 151; https://doi.org/10.1016/0883-2889(87)90013-x.Search in Google Scholar

15. Ramli, M., Sharma, H. L. Radiochemical separation of l0lmRh via 101Pd from a rhodium target. Appl. Radiat. Isot. 1997, 48, 327; https://doi.org/10.1016/s0969-8043(96)00216-3.Search in Google Scholar

16. Beamish, F. E., Mcbryde, W. A. E. Concentrating and dissolving platinum metals. Anal. Chem. 1953, 25, 1613; https://doi.org/10.1021/ac60083a011.Search in Google Scholar

17. Beamish, F. E. The Analytical Chemistry of the Noble Metals; Pergamon Press Ltd.: London, 1966; pp. 1–609.10.1016/B978-1-4832-0094-1.50006-XSearch in Google Scholar

18. Gile, J. D., Haymond, H. R., Garrison, W. M., Hamilton, J. G. Carrier-free radioisotopes from cyclotron targets.: XVI. Preparation and isolation of Pd103 from rhodium. J. Chem. Phys. 1951, 19, 660; https://doi.org/10.1063/1.1748321.Search in Google Scholar

19. Shimojima, H. Separation of carrier-free palladium-103 from a rhodium target. Chem. Soc. Jpn. 1961, 82, 1186, in Japanese https://doi.org/10.1246/nikkashi1948.82.9_1186.Search in Google Scholar

20. Levin, V. I., Kozlova, M. D., Malinin, A. B., Zalesskaya, A. B. Production of palladium-103 without a carrier and preparation of a radioactive colloidal preparation of palladium for medical purposes. Radiokhimiya 1971, 13, 622.Search in Google Scholar

21. Abramov, A. A., Volkova, S. V., Iofa, B. Z., Rakhmanov, E. V., Anisimov, A. V. Isolation of palladium-103 from rhodium targets. Radiochemistry 2013, 55, 324; https://doi.org/10.1134/s1066362213030132.Search in Google Scholar

22. Gillette, J. H. ORNL-3802, C-23 Isotopes Industrial technology TID-4500 (39th ed.). Review of radioisotopes program 26, 1964.Search in Google Scholar

23. Tarapčik, P., Mikulaj, V. Separation of 103Pd from cyclotron irradiated rhodium targets. Radiochem. Radional. Letters 1981, 48, 15.Search in Google Scholar

24. Zhang, C., Wang, Y., Zhang, Y., Zhang, X. Cyclotron production of no-carrier-added palladium-103 by bombardment of rhodium-103 target. Appl. Radiat. Isot. 2001, 55, 441.10.1016/S0969-8043(01)00051-3Search in Google Scholar

25. Yuldashev, B. S., Khudaibergenov, U., Gulamov, I. R., Mirzaeva, M., Rylov, A. A. Extraction of carrier-free 103Pd from thin rhodium wire irradiated with a proton beam in a U-150 cyclotron. Radiochemistry 2003, 45, 167; https://doi.org/10.1023/a:1023837426853.10.1023/A:1023837426853Search in Google Scholar

26. Sadeghi, M., Afarideh, H., Raisali, G., van den Winkel, P. Electroplating/electrodissolution/recovery cycle for rhodium target used for an industrial scale cyclotron production of palladium-103. Radiochim. Acta 2006, 94, 217; https://doi.org/10.1524/ract.2006.94.4.217.Search in Google Scholar

27. Sadeghi, M., Afarideh, H., Van den Winkel, P. Electrodissolution system for rhodium fragmented electroplated targets used for the industrial cyclotron production of 103Pd. J. Radioanal. Nucl. Chem. 2007, 273, 521; https://doi.org/10.1007/s10967-007-0902-x.Search in Google Scholar

28. Enferadi, M., Sadeghi, M., Ensaf, M. Cyclotron production of 101Pd/101mRh radionuclide generator for radioimmunotherapy. Kerntechnik 2011, 76, 131; https://doi.org/10.3139/124.110118.Search in Google Scholar

29. Fink, C. G., Lambros, G. C. Rhodium Plating. Trans Electrochem. Soc. 1933, 63, 181.10.1149/1.3493809Search in Google Scholar

30. Atkinson, R. H., Raper, A. R. The electrodeposition of rhodium. Trans. IMF 1934, 9, 77; https://doi.org/10.1080/00202967.1934.11871607.Search in Google Scholar

31. Wang, R., Li, H., Sun, H.: environmental pollution and health effects. Encyclopedia of Environmental Health, 2nd ed., 2019, 1, 415. Published online 2019 Sep 12; https://doi.org/10.1016/B978-0-12-409548-9.11870-6.Search in Google Scholar

32. Nagatsu, K., Fukada, M., Minegishi, K., Suzuki, H., Fukumura, T., Yamazaki, H., Suzuki, K. Fully automated production of iodine-124 using a vertical beam. Appl. Radiat. Isot. 2011, 69, 146.https://doi.org/10.1016/j.apradiso.2010.09.010.Search in Google Scholar

33. Krause, R. A., Jicha, D. C., Busch, D. H. Reactions of coördinated ligands. Acylation of the coördinated oxime group. J. Am. Chem. Soc. 1961, 83, 528; https://doi.org/10.1021/ja01464a005.Search in Google Scholar

34. Høgdahl, O. T. The Radiochemistry of Palladium; National Academy of Sciences—National Research Council: Washington, 1961; pp. 1–62.Search in Google Scholar

35. Benguerel, E., Demopoulos, G. P., Harris, G. B. Sepciation and separtion of rhodium(III) from chloride solutions: a critical review. Hydrometallurgy 1996, 40, 135; https://doi.org/10.1039/b813593b.Search in Google Scholar

36. Fernández, G., Pleixats, R. Rhodium nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the hydrosilylation of internal alkynes and the reduction of nitroarenes. Catalysts 2020, 10, 1195; https://doi.org/10.3390/catal10101195.Search in Google Scholar

37. National Nuclear Data Center. NuDat 2.7; Brookhaven National Laboratory: NY. Available online at http://www.nndc.bnl.gov/chart/.Search in Google Scholar

38. Okabe, T. H., Kayanuma, Y., Yamamoto, S., Maeda, M. Platinum recovery using calcium vapor treatment. Mater. Trans. 2003, 44, 1386.https://doi.org/10.2320/matertrans.44.1386.Search in Google Scholar

39. Kayanuma, Y., Okabe, T. H., Mitsuda, Y., Maeda, M. New recovery process for rhodium using metal vapor. J. Alloys Compd. 2004, 365, 211; https://doi.org/10.1016/s0925-8388(03)00666-2.Search in Google Scholar

40. Armstrong, J. C.Jr., Choppin, G. R. Radiochemiry of Rhodium; National Academy of Sciences-National Research Council: Washington, 1965; pp. 1–75.Search in Google Scholar

41. Okamoto, H. Bi-Rh (Bismuth-Rhodium). J. Phase Equilibria Diffus. 2010, 31, 204; https://doi.org/10.1007/s11669-010-9660-5.Search in Google Scholar

42. Kainzbauer, P., Richter, K. W., Ipser, H. The binary Bi-Rh phase diagram: stable and metastable phases. J. Phase Equilibria Diffus. 2018, 39, 17; https://doi.org/10.1007/s11669-017-0600-5.Search in Google Scholar

43. Kmak, K. N., Despotopulos, J. D., Shaughnessy, D. A. Separation of Pb, Bi and Po by cation exchange resin. J. Radioanal. Nucl. Chem. 2017, 314, 985; https://doi.org/10.1007/s10967-017-5487-4.Search in Google Scholar

44. Sudár, S., Cserpák, F., Qaim, S. M. Measurements and nuclear model calculations on proton-induced reactions on 103Rh up to 40 MeV: evaluation of the excitation function of the 103Rh(p, n)103Pd reaction relevant to the production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2002, 56, 821.10.1016/S0969-8043(02)00054-4Search in Google Scholar

45. Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions. IAEA, VIENNA, 2001, IAEA-TECDOC-1211.Search in Google Scholar

Received: 2021-10-29
Accepted: 2022-01-20
Published Online: 2022-02-10
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2021-1117/html
Scroll to top button