Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 7, 2021

Investigation of Re(VII) diffusion in Tamusu clayrock core by through-diffusion method

  • Yuzhen Sun , Hui Zhang , Rong Hua , Mingbiao Luo EMAIL logo , Chuan-Pin Lee EMAIL logo , Zhifen Wang , Weigang Liu , Jie Kong and Yunfeng Shi
From the journal Radiochimica Acta

Abstract

Tamusu area is the primary pre-selection site of clayrock disposal repository for high-level radioactive waste (HLW) in China. However, the research on the migration behavior of nuclides in Tamusu clayrock is still in its infancy. For the first time in laboratory, the diffusion behavior of Re(VII) in Tamusu clayrock core was studied by means of through-diffusion method. The effects of pH, ionic strength and humic acid on the diffusion behavior of Re(VII) in clayrock were studied. The effective diffusion coefficient, apparent diffusion coefficient and rock capacity factor value were obtained. All the experimental conditions of Re(VII) diffusion in Tamusu clayrock are compared with other geological samples under the same conditions in literature data. The diffusion mechanism of radionuclide in Tamusu clay is discussed, which can provide experimental data for site selection and safety assessment of high-level radioactive waste repository in China. The experimental results showed an effective application and reference for the countries disposed HLW in mudrocks or clayrocks, such as France, Belgium etc. in Europe. Moreover, this research can provide the original data support for the metallogenic regularity and prospecting prognosis of rare element rhenium in different geological environments.


Corresponding author: Mingbiao Luo, State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail: ; and Chuan-Pin Lee, College of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Grants from National Natural Science Foundation of China (21761002), The State key Laboratory Project jointly built by the Ministry of Nuclear Resources and Environment (NRE1313), National Defense Basic Scientific Research Project (JCKY2017401C005) and Nuclear energy development project.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. National People’s Congress of the People’s Republic of China. Nuclear Safety Law of the People’s Republic of China; Law Press: Beijing, 2018.Search in Google Scholar

2. Wang, J., Xu, G. Q., Jin, Y. X. On the host rock for the geological repositories of high-level radioactive waste. World Nucl. Geosci. 2006, 23, 222–231.Search in Google Scholar

3. Zheng, H. L., Fu, B. J., Fan, X. H., Chen, S., Sun, D. H. Focusing on clay formation as host media of HLW geological disposal in China. Radiat. Prot. 2007, 27, 92–98.Search in Google Scholar

4. Delage, P., Cui, Y. J., Tang, A. M. Clays in radioactive waste disposal. J. Rock Mech. Geotech. Eng. 2010, 2, 111–123. https://doi.org/10.3724/sp.j.1235.2010.00111.Search in Google Scholar

5. Cui, A. X. Introduction to radioactive waste management in Belgium. Radiat. Prot. 2001, 21, 63–64.Search in Google Scholar

6. Li, C., Liu, X. Y., Chen, T., Tian, W. Y., Zheng, Z., Wang, L. H., Liu, C. L. The influence of pH on the sorption and diffusion of 99TcO4− in Beishan granite. Radiochim. Acta 2012, 100, 449–455. https://doi.org/10.1524/ract.2012.1936.Search in Google Scholar

7. Wu, T., Dai, W., Xiao, G. P., Shu, F. J., Yao, J., Li, J. Y. Influence of dry density on HTO diffusion in GMZ bentonite. Appl. Clay. Sci. 2012, 292, 853–857. https://doi.org/10.1007/s10967-011-1523-y.Search in Google Scholar

8. Wu, T., Wang, H., Zheng, Q., Li, J. Y. Effect of organic matter on 125I diffusion in bentonite. J. Radioanal. Nucl. Chem. 2014, 303, 255–260. https://doi.org/10.1007/s10967-014-3333-5.Search in Google Scholar

9. Chagneau, A., Tournassat, C., Steefel, C. I., Bourg, I. C., Gaboreau, S., Esteve, I., Kupcik, T., Claret, F., Schafer, T. Complete restriction of 36Cl− diffusion by celestite precipitation in densely compacted illite. Environ. Sci. Technol. Lett. 2015, 2, 139–143; https://doi.org/10.1021/acs.estlett.5b00080.Search in Google Scholar

10. Li, C., Wang, C. L., Liu, X. Y., Zheng, Z., Wang, L. H., Zhu, Q. Q., Kang, M. L., Chen, T., Liu, C. L. Effects of ionic strength and humic acid on 99TcO4- sorption and diffusion in Beishan granite. J. Radioanal. Nucl. Chem. 2012, 293, 751–756.10.1007/s10967-012-1746-6Search in Google Scholar

11. He, H. Y., Liu, J., Dong, Y., Li, H. H., Zhao, S. W., Wang, J., Jia, M. L., Zhang, H., Liao, J. L., Yang, J. J., Yang, Y. Y., Liu, N. Sorption of selenite on Tamusu clay in simulated groundwater with highsalinity under aerobic/anaerobic conditions. J. Environ. Radioactiv. 2019, 203, 210–219. https://doi.org/10.1016/j.jenvrad.2019.03.020.Search in Google Scholar PubMed

12. Zhang, H., Dong, Y., He, H. Y., Li, H. H., Zhao, S. W., Liu, J., Jia, M. L., Yang, J. J., Yang, Y. Y., Liu, N., Liao, J. L. Sorption of cesium on Tamusu clay in synthetic groundwater with high ionic strength. Radiochim. Acta 2020, 108, 287–296. https://doi.org/10.1515/ract-2019-3161.Search in Google Scholar

13. Zhang, H., He, H. Y., Liu, J., Li, H. H., Zhao, S. W., Jia, M. L., Yang, J. J., Liu, N., Yang, Y. Y., Liao, J. L. Sorption behavior of Eu(Ⅲ) on Tamusu clay under strong ionic strength: batch experiments and BSE/EDS analysis. Nucl. Eng. Technol. 2021, 53, 164–171. https://doi.org/10.1016/j.net.2020.06.009.Search in Google Scholar

14. Wu, H., Huang, W., Duan, Z. Q., Luo, M. B., Wang, Z. F., Hua, R. Investigation of Se(IV) diffusion in compacted Tamusu clay by capillarymethod. J. Radioanal. Nucl. Chem. 2019, 324, 903–911. https://doi.org/10.1007/s10967-020-07089-6.Search in Google Scholar

15. Shih, Y. H., Lee, I. H., Ni, C. F., Tsai, T. L., Chen, L. C., Lee, C. P., Tsai, S. C., Su, T. Y. Experimental and numerical investigations of 99TcO4- diffusion in compacted SPV200 bentonite. J. Radioanal. Nucl. Chem. 2018, 316, 1081–1089. https://doi.org/10.1007/s10967-018-5800-x.Search in Google Scholar

16. Zhang, H., Wu, H., Luo, M. B., Wang, Z. F., Hua, R., Yu, W. T., Wu, T. Effect of citric acid and compacted density on adsorption and diffusion of Re(VII) in Na+-and Ca2+-bentonite. Sci. Technol. Eng. 2020, 21, 8474–8479.Search in Google Scholar

17. Zhang, Y., Song, Z. X., Bao, L. J., Yao, J., Jiang, T., Long, H. Q., Wang, B., Chen, X., Su, X. G. Sorption and diffusion on technetium in the bentonite from gaomiaozi. J. Nucl. Radiochem. 2011, 33, 124–128.Search in Google Scholar

18. Wu, T., Wang, H., Zheng, Q., Zhao, Y. L., Li, J. Y. Effect of EDTA on the diffusion behavior of 99TcO4- and ReO4- in GMZ bentonite. J. Radioanal. Nucl. Chem. 2014, 299, 2037–2041. https://doi.org/10.1007/s10967-013-2831-1.Search in Google Scholar

19. Wang, H., Wu, T., Chen, J., Zhao, Y. L., He, C. H., Li, J. Y. Through-and out-diffusion of Se(IV) and Re(VII) in compacted bentonite. Adv. Mater. Res. 2014, 953, 614–620.10.4028/www.scientific.net/AMR.953-954.614Search in Google Scholar

20. Rao, G. W. Study on Characteristic of Surrounding Rock of High-Level Radioactive Waste Geological Disposal Reservoir: A Case Study of Mudstone in the Upper Part of the BayinGobi Formation in the Preselected Area of Tamusu in Inner Mongolia; East China Institute of Technology: China, Nanchang, 2018.Search in Google Scholar

21. Sun, Y. Z., Zhang, H., Lee, C. P., Luo, M. B., Hua, R., Liu, W. G., Jie, K., Hu, Y. Q. Diffusion behavior of Se(IV) in Tamusu clayrock core by through-diffusion method. J. Radioanal. Nucl. Chem. 2021, 329, 149–158. https://doi.org/10.1007/s10967-021-07780-2.Search in Google Scholar

22. Lee, C. P., Hu, Y. Q., Tien, N. C., Tsai, S. C., Shi, Y. F., Liu, W. G., Jie, K., Sun, Y. Z. Molecule diffusion behavior of tritium and selenium in Mongolia clay rock by numerical analysis of the spatial and temporal variation. Minerals 2021, 11, 875. https://doi.org/10.3390/min11080875.Search in Google Scholar

23. Feng, W. L. Characteristics and Origin of Clay Minerals in the Sandstone of Taiyuan Formation, Northeastern Ordos Basin; Chengdu University of Technology: China, Chengdu, 2009.Search in Google Scholar

24. Wang, Z. F., Wu, T., Ren, P., Hua, R., Wu, H., Xu, M. H., Tong, Y. H. Through-diffusion study of Se (IV) in γ-irradiated bentonite and bentonite–magnetite. J. Radioanal. Nucl. Chem. 2019, 322, 801–808. https://doi.org/10.1007/s10967-019-06802-4.Search in Google Scholar

25. Meng, W. B., Lu, Z. X., Feng, M. S., Zhang, S. H., Li, M., Mai, F. H. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs: a case study on sandstones in the 4th member of Xujiahe Formation, western Sichuan Basin. ACTA Pet. Sin. 2011, 32, 783–790. https://doi.org/10.1007/s12182-011-0123-3.Search in Google Scholar

26. Wang, Z. F., Hou, M., Chen, Y. C., Shi, L., Wu, T., Li, J. Y. Diffusion behavior of Re (VII) in compacted irradiated bentonite. At. Energ. Sci. Technol. 2017, 51, 617–621. https://doi.org/10.7538/yzk.2017.51.04.0617.Search in Google Scholar

27. Liu, C. L., Wang, X. Y., Li, S. S., Wang, Z. M., Gao, H. C., Li, B., Wen, R. Y., Wang, H. F., Tang, L. T., Xin, C. T., Jiang, L. Diffusion of 99Tc in granite: a small scale laboratory simulation experiment. Radiochim. Acta 2001, 89, 639–642. https://doi.org/10.1524/ract.2001.89.10.639.Search in Google Scholar

28. Shih, Y. H., Tsai, T. L., Chen, L. C., Su, T. Y., Lee, C. P., Tsai, S. C. Determination of sorption and diffusion parameters of 99Tc in crushed granite using through-diffusion experiments. J. Radioanal. Nucl. Chem. 2016, 311, 1111–1116. https://doi.org/10.1007/s10967-016-4986-z.Search in Google Scholar

29. Wu, T., Wang, Z. F., Li, Q. M., Pan, G. J., Li, J. Y., Van Loon, L. R. Re (VII) diffusion in bentonite: effect of organic compounds, pH and temperature. Appl. Clay. Sci. 2016, 127-128, 10–16.10.1016/j.clay.2016.03.039Search in Google Scholar

30. Wang, Z. F., Wang, H., Li, Q. M., Xu, M. H., Guo, Y. H., Li, J. Y., Wu, T. pH effect on Re (VII) and Se (IV) diffusion in compacted GMZ bentonite. Appl. Geochem. 2016, 73, 1–7.10.1016/j.apgeochem.2016.07.015Search in Google Scholar

31. Li, Q. M. Effect of Organic Matter and Illite on the Se(IV) and Re(VII) Diffusion in Compacted Montmorillonite; Nanchang, East China Institute of Technology: Nanchang, 2015.Search in Google Scholar

32. Wu, T., Wang, Z. F., Wang, H., Zhang, Z. Q., Van Loon, L. R. Salt effects on Re (VII) and Se (IV) diffusion in bentonite. Appl. Clay. Sci. 2017, 141, 104–110.10.1016/j.clay.2017.02.021Search in Google Scholar

33. Russel, W. B., Saville, D. A., Schowalter, W. R. Colloidal dispersions; Cambridge University Press: Cambridge, 1989.10.1017/CBO9780511608810Search in Google Scholar

34. Tian, W. Y., Li, C., Liu, X. Y., Wang, L. H., Zheng, Z., Wang, X. Y., Liu, C. L. The effect of ionic strength on the diffusion of 125I in GMZ bentonite. J. Radioanal. Nucl. Chem. 2013, 295, 1423–1430.10.1007/s10967-012-2284-ySearch in Google Scholar

35. Peak, D., Saha, U., Huang, P. Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci. Soc. Am. J. 2006, 70, 192–203.10.2136/sssaj2005.0054Search in Google Scholar

36. Wu, T., Wang, H., Zheng, Q., Zhao, Y. L., Van Loon, L. R. Diffusion behavior of Se (IV) and Re (VII) in GMZ bentonite. Appl. Clay Sci. 2014, 101, 136–140.10.1016/j.clay.2014.07.028Search in Google Scholar

37. Wu, T., Wang, Z. F., Tong, Y. H., Wang, Y. Y., Van Loon, L. R. Investigation of Re (VII) diffusion in bentonite by through-diffusion and modeling techniques. Appl. Clay Sci. 2018, 166, 223–229.10.1016/j.clay.2018.08.023Search in Google Scholar

38. Jia, W. H. Efficiency and Mechanism of Ozone Combined with MIEX Resin to Remove Humic Acid with Molecular weight>10KDa in Source Water; Anhui University of Technology: Anhui, 2020.Search in Google Scholar

39. Zhao, Y. L., Wang, H., Luo, Y., Fu, B. F., Wu, T., He, C. H. Effect of humic acid on Re (VII) diffusion in GMZ bentonite. At. Energ. Sci. Technol. 2015, 49, 979–983.Search in Google Scholar

40. Wang, H., Wu, T., Chen, J., Fu, B. F., Zhao, X. H., Luo, Y., Zhao, L. Y., He, C. H. Effect of humic acid contact time on the diffusion of Re (VII) in GMZ bentonite. Nucl. Sci. Techni. 2015, 26, 135–139.Search in Google Scholar

Received: 2021-10-18
Accepted: 2021-11-20
Published Online: 2021-12-07
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2021-1116/html
Scroll to top button