Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 26, 2021

Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis

  • Mohamed F. Attallah ORCID logo EMAIL logo , Fatma S. Abdou and Hisham F. Aly
From the journal Radiochimica Acta

Abstract

Nuclear techniques are applied for exploration and efficient tapping of natural resources in finding promising resources of mining and mineral processing industries. The rare earth elements (REEs) in four fluorite samples, collected from Nuba Mountains are determined using neutron activation analysis (NAA) technique. The concentration of 11 REEs (Sc, La, Ce, Nd, Sm, Eu, Gd, Dy, Tb, Yb, Lu) was measured and found within ranges between 685 and 1747 ppm. The Ca is a major element in the four samples. The Fe, Al, Na, Ba and Sr are found as minor elements in the investigated samples. In addition, tracer levels of U, Th, Cs, V and Sc are also detected. The signature of Ce, La and Nd as light REEs is characterized in all samples under this study. The enrichment types of light-REEs (L-type), medium-REEs (M-type) and several distinct features of some REEs e.g., Ce and Eu anomalies are identified and described as the signature of REEs in the geochemical samples. These results have demonstrated promising materials that could be used for hydrometallurgy processing to get significant amounts of REEs.


Corresponding author: Mohamed F. Attallah, Analytical Chemistry and Control Department, Hot Laboratories Center, Atomic Energy Authority of Egypt, P.O. Box 13759, Cairo, Egypt, E-mail:

Acknowledgments

The authors wish to express special thanks to Prof. Dr. S. M. Qaim, the Editor-in-chief of Radiochimica Acta, for his valuable efforts and comments to improve our paper. The authors are extended appreciation and thanks express their gratitude to the crew of second Egyptian Nuclear Research Reactor (ETRR-2) at the EAEA for their valuable assistance in the course of activation of the studied samples in due time.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Piper, D. Z., Bau, M. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions.Am. J. Anal. Chem. 2013, 4, 69–83. https://doi.org/10.4236/ajac.2013.410A1009.Search in Google Scholar

2. Attallah, M. F., Hassan, R. S., Shady, S. A. Chromatographic column separation of rare earth elements by resorcinol formaldehyde cationic exchanger resin. Arab J. Nucl. Sci. Appl. 2013, 46, 18–29.Search in Google Scholar

3. Seredin, V. V., Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93; https://doi.org/10.1016/j.coal.2011.11.001.Search in Google Scholar

4. Dai, S., Graham, I. T., Ward, C. R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95; https://doi.org/10.1016/j.coal.2016.04.005.Search in Google Scholar

5. Borai, E., Attallah, M., Koivula, R., Paajanen, A., Harjula, R. Separation of europium from cobalt using antimony silicates in sulfate acidic media. Min. Proc. Ext. Met. Rev. 2012, 33, 204; https://doi.org/10.1080/08827508.2011.562951.Search in Google Scholar

6. Shady, S. A., Attallah, M. F., Borai, E. H. Efficient sorption of light rare-earth elements using resorcinol–formaldehyde polymeric resin. Radiochemistry 2011, 53, 396–400; https://doi.org/10.1134/S1066362211040102.Search in Google Scholar

7. Attallah, M. F., El Afifi, E. M., Awwad, N. S., Aly, H. F. Comparative study on the radioactivity of TE-NORM in different components of oil separator tanks. Radiochim. Acta 2013, 101, 57–65; https://doi.org/10.1524/ract.2013.1996.Search in Google Scholar

8. El Afifi, E. M., Attallah, M. F., Hilal, M. A., El Reefy, S. A. Treatment of TENORM waste: phosphogypsum produced in fertilizer industry. Radiochemistry 2010, 52, 441–445; https://doi.org/10.1134/S106636221004020X.Search in Google Scholar

9. El-Didamony, H., Ali, M. M., Awwad, N. S., Attallah, M. F., Fawzy, M. M. Radiological characterization and treatment of contaminated phosphogypsum waste. Radiochemistry 2013, 55, 454–459; https://doi.org/10.1134/S106636221304019X.Search in Google Scholar

10. Soto-Jiménez, M., Páez-Osuna, F., Morales-Hernández, F. Selected trace metals oysters (Crassostreairidescens) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán by (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environ. Pollut. 2001, 114, 357; https://doi.org/10.1016/s0269-7491(00)00239-6.Search in Google Scholar

11. Khan, R., Shirai, N., Ebihara, M. Chemical characteristic of Rchondrites in the light of P, REEs, Th and U abundances. Earth Planet Sci. Lett. 2015, 422, 18; https://doi.org/10.1016/j.epsl.2015.04.008.Search in Google Scholar

12. Ismail, I., Baioumy, H., Ouyang, H., Mossa, H., Aly, H. F. Origin of fluorite mineralization in the Nuba Mountains, Sudan and their rare earth element geochemistry. J. Afr. Earth Sci. 2015, 112, 276–286. https://doi.org/10.1016/j.jafrearsci.2015.09.016.Search in Google Scholar

13. Chowdhury, M. A. H., Hoque, M. M., Hossain, S. M., Naher, K., Islam, M. A., Tamim, U., Alam, K. M. S., Khan, R. Analysis of heavy metals and other elements in textile waste using neutron activation analysis and atomic absorption spectrophotometry. J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 14; https://doi.org/10.9790/2402-1106011423.Search in Google Scholar

14. Greenberg, R. R., Bode, P., Fernandes, E. A. D. N. Neutron activation analysis: a primary method of measurement. Spectrochim. Acta Part B 2011, 66, 193; https://doi.org/10.1016/j.sab.2010.12.011.Search in Google Scholar

15. Noli, F., Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 2016, 563–564, 377; https://doi.org/10.1016/j.scitotenv.2016.04.098.Search in Google Scholar

16. Cristache, C., Duliu, O. G., Ricman, C., Toma, M., Dragolici, F., Bragea, M., Done, L. Determination of elemental content in geological samples. Rom. J. Phys. 2008, 53, 941–946.Search in Google Scholar

17. Anders, B., Junge, W., Knoth, J., Michaelis, W., Pepelnik, R., Schwenke, H. Application of nuclear analytical methods to heavy metal pollution studies of estuaries. US-DOE, CONF-840408. In US-DOE, CONF-840408, Proceedings of the Fifth international conference on nuclear methods in environmental and energy research. Held at Mayaguez, Puerto Rico, April 2–6 (1984); Vogt, J. R., Ed., 1984; p. 202. https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/076/16076690.pdf.Search in Google Scholar

18. Fodor, L., Csontos, L., Bada, G., Györfi, I., Benkovics, L. The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen; Geological Society Special Publication: London, Vol. 156, 1999; p. 295.10.1144/GSL.SP.1999.156.01.15Search in Google Scholar

19. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 2019, 146C, 789–797. https://doi.org/10.1016/j.microc.2019.02.001.Search in Google Scholar

20. Attallah, M. F., Hilal, M. A., Moussa, S. I. Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl. Radiat. Isot. 2017, 128, 224–230. https://doi.org/10.1016/j.apradiso.2017.07.018.Search in Google Scholar

21. Khan, R., Parvez, Md. S., Tamim, U., Das, S., Islam, M. A., Naher, K., Khan, Md. H. R., Nahid, F., Hossain, S. M. Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim. Acta 2018, 106, 515–524. https://doi.org/10.1515/ract-2017-2867.Search in Google Scholar

22. Jaćimović, R., Taseska-Gjorgjijevski, M., Stafilov, T., Jovanovski, G., Makreski, P. Application of k0 -instrumental neutron activation analysis for determination of major and trace elements in some manganese minerals. Geol. Maced. 2018, 32, 157–162.Search in Google Scholar

23. Soliman, M., Mohamed, N. M. A., Gahen, M., Saad, E. A., Yousef, S. K., Sohsah, M. A. Implementation of k0-standardization method of the INAA at ETRR-2 research reactor. J. Radioanal. Nucl. Chem. 2011, 287, 629–634; https://doi.org/10.1007/s10967-010-0860-6.Search in Google Scholar

24. Corte, F. D. E., Simonits, A., Wispelaere, A. D. E., Hoste, J., Moens, L., Demeter, A. A Compilation of Ko, Au-Factors and Related Nuclear Data for 112 Radionuclides of Interest in Neutron Activation Analysis; INW/KFKI Interim Report, Institute for Nuclear Sciences, University Gent (Belgium) and Central Research Institute for Physics: Budapest (Hungary), 1986.Search in Google Scholar

25. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Entries/2020/8/24_Update_of_k0-database_I-128.html.Search in Google Scholar

26. Soliman, M., Mohamed, N. M. A., Osman, A. M., Abdel-Monem, A. M. Performance of flowing sample neutron activation analysis technique for determination of multi-elemental content. J. Radioanal. Nucl. Chem. 2014, 299, 89–93; https://doi.org/10.1007/s10967-013-2733-2.Search in Google Scholar

27. Messaoudi, M., Begaa, S. Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carumcarvi L. & Foeniculumvul-gare Mill. used in Algeria. J. Appl. Res. Med. Aromat. Plants 2018, 9, 39–45; https://doi.org/10.1016/j.jarmap.2018.01.001.Search in Google Scholar

28. Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9; https://doi.org/10.1016/j.chemgeo.2014.05.004.Search in Google Scholar

29. Eskenazy, G. M. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem. 1987, 11, 83–89; https://doi.org/10.1016/0146-6380(87)90030-1.Search in Google Scholar

30. Taylor, S. R., McLennan, S. H. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, 1985; p. 312.Search in Google Scholar

31. Jiang, Y., Zhao, L., Zhou, G., Wang, X., Zhao, L., Wei, J., Song, H. Petrological, mineralogical, and geochemical compositions of early jurassic coals in the Yining Coalfield, Xinjiang, China. Int. J. Coal Geol., Part A 2015, 152, 47–67; https://doi.org/10.1016/j.coal.2015.07.011.Search in Google Scholar

32. Saikia, B. K., Ward, C. R., Oliveira, M. L. S., Hower, J. C., Leao, F. D., Johnston, M. N., Bryan, A. O., Sharma, A., Baruah, B. P., Silva, L. F. O. Geochemistry and nano-mineralogy of feed coals, mine overburden and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach. Int. J. Coal Geol. 2015, 137, 19–37; https://doi.org/10.1016/j.coal.2014.11.002.Search in Google Scholar

33. Crowley, S. S., Stanton, R. W., Ryer, T. A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Org. Geochem. 1989, 14, 315–331; https://doi.org/10.1016/0146-6380(89)90059-4.Search in Google Scholar

34. Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., Guillet, B. Cerium anomalies in lateritic profiles. Geochem. Cosmochim. Acta 1990, 54, 781–795; https://doi.org/10.1016/0016-7037(90)90373-s.Search in Google Scholar

35. Seto, M., Akagi, T. Chemical condition for the appearance of a negative Ce anomaly in stream waters and groundwaters. Geochem. J. 2008, 42, 371–380; https://doi.org/10.2343/geochemj.42.371.Search in Google Scholar

36. Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230; https://doi.org/10.1016/0009-2541(91)90115-8.Search in Google Scholar

37. Uysal, I. T., Golding, S. D. Rare earth element fractionation in authigenicillite–smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization. Chem. Geol. 2003, 193, 167–179; https://doi.org/10.1016/s0009-2541(02)00324-8.Search in Google Scholar

38. Kritsananuwat, R., Sahoo, S. K., Fukushi, M., Chanyotha, S. Distribution of rare earth elements, thorium and uranium Gulf of Thailand’s sediments. Environ. Earth Sci. 2014, 73, 3361–3374; https://doi.org/10.1007/s12665-014-3624-8.Search in Google Scholar

39. Rudnick, R. L., Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H. D., Turekian, K. K., Eds.; Elsevier: New York, 2003; pp. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.Search in Google Scholar

40. Rudnick, R. L., Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Turekian, K., Holland, H., Eds., 2nd ed., Chapter 4; Elsevier: Oxford, UK, 2014; pp. 1–64.10.1016/B0-08-043751-6/03016-4Search in Google Scholar

41. Gromet, P. L., Dymek, P. F., Haskin, L. A., Korotev, R. L. The North American shale composite: its composition, major and minor element characteristics. Geochem. Cosmochim. Acta 1984, 48, 2469–2482. https://doi.org/10.1016/0016-7037(84)90298-9.Search in Google Scholar

42. McLennan, S. M. Relationships between the trace element compositions of sedimentary rocks and upper continental crust. G-cubed 2001, 2, 1–24. https://doi.org/10.1029/2000GC000109.Search in Google Scholar

43. Piper, D. Z. Rare-earth elements in the sedimentary cycle: a summary. Chem. Geol. 1974, 14, 285–304. https://doi.org/10.1016/0009-2541(74)90066-7.Search in Google Scholar

44. Schmidt, R. A., Smith, R. H., Lasch, J. E., Mosen, A. W., Olehy, D. A., Vasilevshis, J. Abundances of fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrigenous matter. Geochem. Cosmochim. Acta 1963, 27, 577–622. https://doi.org/10.1016/0016-7037(63)90014-0.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2020-0101).


Received: 2020-09-25
Accepted: 2021-01-10
Published Online: 2021-01-26
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0101/html
Scroll to top button