Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 13, 2018

A review of the analytical methodology to determine Radium-226 and Radium-228 in drinking waters

  • Akbar Abbasi EMAIL logo
From the journal Radiochimica Acta

Abstract

Radium-228 (228Ra) and Radium-226 (226Ra) isotopes in drinking water are significant from the aspect of radiation protection and human health. In this paper, the three most common preconcentration methods, i.e.coprecipitation, absorption and evaporation, were reviewed with emphasis on routinely measurement techniques. The reviewed measurement techniques include low background γ-spectrometry, α-spectrometry and liquid scintillation counting. The γ-spectrometry technique is the good selection, when the maximum sensitivity is considered. The Environmental Protection Agency guideline has provided the maximum concentration level 0.74 Bq/L for 226Ra and 228Ra. Also, the World Health Organization guideline limit is 1 Bq/L and 0.1 Bq/L for 226Ra and 228Ra, respectively.

Acknowledgments

Partial financial support of this study through University of Girne research project and through the funds of the Turkish Republic of Northern Cyprus education ministry is kindly acknowledged.

References

1. Jia, G., Jia, J.: Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J. Environ. Radioact. 106, 98 (2012).10.1016/j.jenvrad.2011.12.003Search in Google Scholar

2. Abbasi, A., Mirekhtiary, F.: Gross alpha and beta exposure assessment due to intake of drinking water in Guilan, Iran. J. Radioanal. Nucl. Chem. 314(2), 1075 (2017).10.1007/s10967-017-5493-6Search in Google Scholar

3. ICRP 68: Annales of the ICRP 24(4), 66 (1994).Search in Google Scholar

4. Tripathi, R. M., Jha, V. N., Sahoo, S. K., Sethy, N. K., Shukla, A. K., Puranik, V. D., Kushwaha, H. S.: Study of the distribution of 226Ra in ground water near the uranium industry of Jharkhand, India. Radiat. Prot. Dosimetry 148(2), 211 (2012).10.1093/rpd/ncr014Search in Google Scholar

5. Cech, I., Lemma, M., Kreitler, C. W., Prichard, H. M.: Radium and radon in water supplies from the Texas Gulf Coastal aquifer. Water Res. 22(1), 109 (1988).10.1016/0043-1354(88)90137-6Search in Google Scholar

6. Hess, C. T., Michel, J., Horton, T. R., Prichard, H. M., Coniglio, W. A.: The occurrence of radioactivity in public water supplies in the United States. Health Phys. 48(5), 553 (1985).10.1097/00004032-198505000-00002Search in Google Scholar

7. Almeida, R. M., Lauria, D. C., Ferreira, A. C., Sracek, O.: Groundwater radon, radium and uranium concentrations in Regiao dos Lagos, Rio de Janeiro State, Brazil. J. Environ. Radioact. 73(3), 323 (2004).10.1016/j.jenvrad.2003.10.006Search in Google Scholar

8. Minster, T., Ilani, S., Kronfeld, J., Even, O., Godfrey-Smith, D. I.: Radium contamination in the Nizzana-1 water well, Negev Desert, Israel. J. Environ. Radioact. 71(3), 261 (2004).10.1016/S0265-931X(03)00173-5Search in Google Scholar

9. Seghour, A., Seghour, F. Z.: Radium and 40K in Algerian bottled mineral waters and consequent doses. Radiat. Prot. Dosimetry 145, 187 (2009).10.1093/rpd/ncp009Search in Google Scholar

10. Asikainen, M., Kahlos, H.: Natural radioactivity of drinking water in Finland. Health Phys. 39(1), 77 (1980).10.1097/00004032-198007000-00009Search in Google Scholar

11. Chau, N. D., Kopec, M.: Factors controlling radium isotope concentrations and their activity ratio in ground waters. Przegl. Geol. 58, 499 (2010).Search in Google Scholar

12. Hakam, O. K., Choukri, A., Reyss, J. L., Lferde, M.: Determination and comparison of uranium and radium isotopes activities and activity ratios in samples from some natural water sources in Morocco. J. Environ. Radioact. 57(3), 175 (2001).10.1016/S0265-931X(01)00016-9Search in Google Scholar

13. Kozłowska, B., Walencik, A., Dorda, J., Przylibski, T. A.: Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland. Radiat. Meas. 42(8), 1380 (2007).10.1016/j.radmeas.2007.03.004Search in Google Scholar

14. Przylibski, T., Dorda, J., Kozłowska, B.: The occurrence of 226Ra and 228Ra in groundwaters of the Polish Sudety Mountains. Nukleonika 47(2), 59 (2002).Search in Google Scholar

15. Desideri, D., Meli, M. A., Feduzi, L., Roselli, C., Rongoni, A., Saetta, D.: 238U, 234U, 226Ra, 210Po concentrations of bottled mineral waters in Italy and their dose contribution. J. Environ. Radioact. 94(2), 86 (2007).10.1016/j.jenvrad.2007.01.005Search in Google Scholar

16. Cech, I., Prichard, H. M., Mayerson, A., Lemma, M.: Pattern of distribution of radium-226 in drinking water of Texas. Water Resour. Res. 23(10), 87 (1987).10.1029/WR023i010p01987Search in Google Scholar

17. Dinh, C. N., Dulinski, M., Jodlowski, P., Nowak, J., Rozanski, K., Sleziak, M., Wachniew, P.: Natural radioactivity in groundwater – a review. Isotopes Environ. Health. Stud. 47(4), 415 (2011).10.1080/10256016.2011.628123Search in Google Scholar

18. Sill, C. W.: Determination of Radium-226 by High Resolution Alpha Spectrometry. Report CONF-830695-Y (1983).Search in Google Scholar

19. Medley, P., Bollhoefer, A., Iles, M., Ryan, B., Martin, P.: Barium sulfate method for radium-226 analysis by alpha spectrometry. Internal Report 501, Supervising Scientist, Darwin NT (2005).Search in Google Scholar

20. Medley, P., Martin, P., Bollhöfer, A., Parry, D.: 228Ra and 226Ra measurement on a BaSO4 co-precipitation source. Appl. Radiat. Isot. 95, 200 (2015).10.1016/j.apradiso.2014.09.015Search in Google Scholar

21. Akyil, S.: Determination of natural radioactivity in public drinking water quality assessment. J. Radioanal. Nucl. Chem. 249(1), 233 (2001).10.1023/A:1013206913667Search in Google Scholar

22. Semkow, T. M., Parekh, P. P., Schwenker, C. D., Khan, A. J., Bari, A., Colaresi, J. F., Guryn, W.: Low-background gamma spectrometry for environmental radioactivity. Appl. Radiat. Isot. 57(2), 213 (2002).10.1016/S0969-8043(02)00085-4Search in Google Scholar

23. Parsa, B., Obed, R. N., Nemeth, W. K., Suozzo, G.: Concurrent determination of 224Ra, 226Ra, 228Ra, and unsupported 212Pb in a single analysis for drinking water and wastewater: dissolved and suspended fractions. Health Phys. 86(2), 145 (2004).10.1097/00004032-200402000-00004Search in Google Scholar PubMed

24. Ruberu, S. R., Liu, Y. G., Perera, S. K.: Occurrence of 224Ra, 226Ra, 228Ra, gross alpha, and uranium in California groundwater. Health Phys. 89(6), 667 (2005).10.1097/01.HP.0000168613.06726.03Search in Google Scholar PubMed

25. Inoue, M., Komura, K.: Preliminary application of low-background gamma-spectrometry to volcanic ground water: Low-levels of 7Be, 22Na, 137Cs and radium isotopes as new geochemical tracers in a ground water flow system. J. Radioanal. Nucl. Chem. 273(1), 177 (2007).10.1007/s10967-007-0732-xSearch in Google Scholar

26. Jiang, H. X., Holtzman, R. B.: Simultaneous determination of 224Ra, 226Ra and 228Ra in large volumes of well waters. Health Phys. 57(1), 167 (1989).Search in Google Scholar

27. Abbasi, A., Bashiry, V.: Measurement of radium-226 concentration and dose calculation of drinking water samples in Guilan province of Iran. Int. J. Radiat. Res. 14(4), 361 (2016).10.18869/acadpub.ijrr.14.4.361Search in Google Scholar

28. Jia, G., Torri, G., Innocenzi, P., Ocone, R., Di Lullo, A.: Determination of radium isotopes in mineral and environmental water samples by alpha-spectrometry. J. Radioanal. Nucl. Chem. 267(3), 505 (2006).10.1007/s10967-006-0079-8Search in Google Scholar

29. Rosa, M. M. L., Maihara, V. A., Ferreira, M. T., Cheberle, L. T. V., Bergamini, G., Bonifácio, R. L., Taddei, M. H. T.: A comparative study of 226Ra determination using total counting and alpha spectrometry in environmental water samples. J. Radioanal. Nucl. Chem. 307(1), 817 (2016).10.1007/s10967-015-4490-xSearch in Google Scholar

30. Colley, S., Thomson, J.: Particulate/solution analysis of 226Ra, 230Th and 210Pb in sea water sampled by in-situ large volume filtration and sorption by manganese oxyhydroxide. Sci. Total Environ. 155(3), 273 (1994).10.1016/0048-9697(94)90506-1Search in Google Scholar

31. Eikenberg, J., Tricca, A., Vezzu, G., Bajo, S., Ruethi, M., Surbeck, H.: Determination of 228Ra, 226Ra and 224Ra in natural water via adsorption on MnO2-coated discs. J. Environ. Radioact. 54(1), 109 (2001).10.1016/S0265-931X(00)00170-3Search in Google Scholar

32. Eikenberg, J., Bajo, S., Beer, H., Hitz, J., Ruethi, M., Zumsteg, I., Letessier, P.: Fast methods for determination of anthropogenic actinides and U/Th-series isotopes in aqueous samples. Appl. Radiat. Isot. 61(23), 101 (2004).10.1016/j.apradiso.2004.03.020Search in Google Scholar

33. Purkl, S., Eisenhauer, A.: Solid-phase extraction using Empore™ Radium Rad Disks to separate radium from thorium. J. Radioanal. Nucl. Chem. 256(3), 473 (2003).10.1023/A:1024547631964Search in Google Scholar

34. Purkl, S., Eisenhauer, A.: A rapid method for α-spectrometric analysis of radium isotopes in natural waters using ion-selective membrane technology. Appl. Radiat. Isot. 59(4), 245 (2003).10.1016/S0969-8043(03)00172-6Search in Google Scholar

35. Fons-Castells, J., Oliva, J., Tent-Petrus, J., Llauradó, M.: Simultaneous determination of 226Ra, 228Ra and 210Pb in drinking water using 3M Empore™ RAD disk by LSC-PLS. Appl. Radiat. Isot. 124, 83 (2017).10.1016/j.apradiso.2017.03.016Search in Google Scholar PubMed

36. Fons-Castells, J., Vasile, M., Loots, H., Bruggeman, M., Llauradó, M., Verrezen, F.: On the direct measurement of 226Ra and 228Ra using 3M Empore™ RAD disk by liquid scintillation spectrometry. J. Radioanal. Nucl. Chem. 309(3), 1123 (2016).10.1007/s10967-016-4740-6Search in Google Scholar

37. Fons-Castells, J., Tent-Petrus, J., Llaurado, M.: Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water samples. J. Environ. Radioact. 166, 195 (2017).10.1016/j.jenvrad.2016.04.035Search in Google Scholar

38. Mohamud, H., van Es, E. M., Sainsbury, T., Ivanov, P., Russell, B., Regan, P. H., Ward, N. I.: Progress towards the development of a rapid analytical approach for separation of 226Ra using dibenzo-18-crown-6 ether functionalised silica (SiO2) disks. Radiat. Phys. Chem. 140, 57 (2017).10.1016/j.radphyschem.2017.02.020Search in Google Scholar

39. Sturchio, N. C.: Radium isotopes, alkaline earth diagenesis, and age determination of travertine from Mammoth Hot Springs, Wyoming, USA. Appl. Geochem. 5(5–6), 631 (1990).10.1016/0883-2927(90)90061-9Search in Google Scholar

40. Saito, T., Ohta, T., Koike, Y., Sato, J.: A new analytical approach for 226Ra and 228Ra in environmental waters. J. Radioanal. Nucl. Chem. 255(3), 535 (2003).10.1023/A:1022540617716Search in Google Scholar

41. Jia, G. Torri, G. Magro, L.: Concentrations of 238U, 234U, 235U, 232Th, 230Th, 228Th, 226Ra, 228Ra, 224Ra, 210Po, 210Pb and 212Pb in drinking water in Italy: reconciling safety standards based on measurements of gross α and β. J. Environ. Radioact. 100(11), 941 (2009).10.1016/j.jenvrad.2009.07.002Search in Google Scholar PubMed

42. Parekh, P., Haines, D., Bari, A., Torres, M.: Non-destructive determination of 224Ra, 226Ra and 228Ra concentrations in drinking water by gamma spectroscopy. Health Phys. 85(5), 613 (2003).10.1097/00004032-200311000-00010Search in Google Scholar PubMed

43. Zikovsky, L.: Determination of alpha-radioactivity in ground water by precipitation of alpha-emitters with sulphates and hydroxides. J. Radioanal. Nucl. Chem. 251(2), 329 (2002).10.1023/A:1014845117078Search in Google Scholar

44. Cazala, C., Reyss, J. L., Decossas, J. L., Royer, A.: Improvement in the determination of 238U, 228-234Th, 226-228Ra, 210Pb, and 7Be by γ spectrometry on evaporated fresh water samples. Environ. Sci. Technol. 37(21), 4990 (2003).10.1021/es034333iSearch in Google Scholar PubMed

45. Abbasi, A., Mirekhtiary, F.: Comparison of active and passive methods for radon exhalation from a high-exposure building material. Radiat. Prot. Dosimetry 157(4), 570 (2013).10.1093/rpd/nct163Search in Google Scholar PubMed

46. Abbasi, A.: Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat. Prot. Dosimetry 155(3), 335 (2013).10.1093/rpd/nct003Search in Google Scholar PubMed

47. Köhler, M., Preuße, W., Gleisberg, B., Schäfer, I., Heinrich, T., Knobus, B.: Comparison of methods for the analysis of 226 Ra in water samples. Appl. Radiat. Isot. 56(1), 387 (2002).10.1016/S0969-8043(01)00219-6Search in Google Scholar

48. Canet, A., Jacquemin, R.: Methods for measuring radium isotopes: gamma spectrometry. The Environmental Behaviour of Radium, Technical Reports Series, 310, 189 (1990).Search in Google Scholar

49. Johnston, A., Martin, P.: Rapid analysis of 226Ra in waters by γ-ray spectrometry. Appl. Radiat. Isot. 48(5), 631 (1997).10.1016/S0969-8043(97)00009-2Search in Google Scholar

50. Lozano, J., Fernandez, F., Gomez, J.: Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometric sources. J. Radioanal. Nucl. Chem. 223(1–2), 133 (1997).10.1007/BF02223373Search in Google Scholar

51. Burns, K.: Determination of radium and uranium isotopes in natural waters by sorption on hydrous manganese dioxide followed by alpha-spectrometry. J. Radioanal. Nucl. Chem. 264(2), 437 (2005).10.1007/s10967-005-0734-5Search in Google Scholar

52. Blanco, P., Lozano, J. C., Tomé, F. V.: On the use of 225Ra as yield tracer and Ba(Ra)SO4 microprecipitation in 226Ra determination by α-spectrometry. Appl. Radiat. Isot. 57(6), 785 (2002).10.1016/S0969-8043(02)00231-2Search in Google Scholar

53. McDowell, W. J.: Methods for measuring radium isotopes: liquid scintillation. Environ. Behav. Radium 213, 213 (1990).Search in Google Scholar

54. Lagacé, F., Foucher, D., Surette, C., Clarisse, O.: Quantification of 226Ra at environmental relevant levels in natural waters by ICP-MS: optimization, validation and limitations of an extraction and preconcentration approach. Talanta 167, 658 (2017).10.1016/j.talanta.2017.02.031Search in Google Scholar PubMed

55. Evans, R. D., Izmer, A., Benkhedda, K., Toms, A., Fernando, A., Wang, W.: Continuous online determination of 226Ra in liquid effluents using automated column chromatography-ICP-MS. Can. J. Chem. 93(11), 1226 (2015).10.1139/cjc-2015-0247Search in Google Scholar

56. Zhang, T., Bain, D., Hammack, R., Vidic, R. D.: Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry. Environ. Sci. Technol. 49(5), 2969 (2015).10.1021/es504656qSearch in Google Scholar PubMed

57. Zoriy, M.: Determination of long-lived radionuclides at ultra-trace level using advanced mass spectrometric techniques. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft (2005), p. 27.Search in Google Scholar

58. Environmental Protection Agency (EPA).: Radionuclides in Drinking Water: A Small Entity Compliance Guide, Office of Ground Water and Drinking Water. Environmental Protection Agency, 815-R-02-001 (2002).Search in Google Scholar

59. World Health Organization.: Guidelines for Drinking-Water Quality (Vol. 1). World Health Organization, Geneva (2004).Search in Google Scholar

60. World Health Organization (WHO).: Guidelines for Drinking-Water Quality. Third edition incorporating the first and second addenda Volume (1), Recommendations (2008).Search in Google Scholar

61. WHO, G.: Guidelines for Drinking-Water Quality. World Health Organization 216, 303 (2011).Search in Google Scholar

62. DIRECTIVE, C.: Council Directive 2013/51/EURATOM of 22 October (2013). Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Off. J. Eur. Union 7, 56 (2013).Search in Google Scholar

63. Mehdizadeh, S., Faghihi, R., Sina, S., Derakhshan, S.: Measurements of natural radioactivity concentration in drinking water samples of Shiraz city and springs of the Fars province, Iran, and dose estimation. Radiat. Prot. Dosimetry 157(1), 112 (2013).10.1093/rpd/nct114Search in Google Scholar PubMed

64. Rusconi, R., Forte, M., Badalamenti, P., Bellinzona, S., Gallini, R., Maltese, S., Romeo, C., Sgorbati, G.: The monitoring of tap waters in Milano: planning, methods and results. Radiat. Prot. Dosimetry 5(4), 373 (2004).10.1093/rpd/nch057Search in Google Scholar PubMed

65. Sac, M. M.: Izmir city drinking water correlation analysis between radioactivity and data. MSc Thesis (Turkish with English abstract) (1994).Search in Google Scholar

66. Bonotto, D. M., Bueno, T.O.: The natural radioactivity in Guarani aquifer groundwater, Brazil. Appl. Radiat. Isot. 66(10), 1507 (2008).10.1016/j.apradiso.2008.03.008Search in Google Scholar PubMed

67. Faanu, A., Lawluvi, H., Kpeglo, D. O., Darko, E. O., Emi-Reynolds, G., Awudu, A. R., Adukpo, O. K., Kansaana, C., Ali, I. D., Agyeman, B., Agyeman, L., Kpodzro, R.: Assessment of natural and anthropogenic radioactivity levels in soils, rocks and water in the vicinity of Chicano Gold Mine in Ghana. Radiat. Prot. Dosimetry 158(1), 87 (2014).10.1093/rpd/nct197Search in Google Scholar PubMed

68. Landsberger, S. G., George, G.: An evaluation of 226Ra and 228Ra in drinking water in several counties in Texas, USA. J. Environ. Radioact. 125, 2 (2013).10.1016/j.jenvrad.2013.02.016Search in Google Scholar PubMed

69. Lopez, M. G., Sánchez, A. M.: Present status of 222Rn in groundwater in Extremadura. J. Environ. Radioact. 99(10), 1539 (2008).10.1016/j.jenvrad.2007.12.013Search in Google Scholar PubMed

70. Yalim, H. A., Akkurt, I., Ozdemir, F. B., Unal, R., Sandikcioglu, A., Akkurt, A.: The measurement of radon and radium concentrations in well water in the Afyonkarahisar area of Turkey. Indoor Built Environ. 16(1), 77 (2007).10.1177/1420326X06074731Search in Google Scholar

71. Sahin, L., Çetinkaya, H., Saç, M. M., Içhedef, M.: Determination of radon and radium concentrations in drinking water samples around the city of Kutahya. Radiat. Prot. Dosimetry 155(4), 474 (2013).10.1093/rpd/nct019Search in Google Scholar PubMed

72. Binesh, A., Mohammadi, S., Mowlavi, A. A., Parvaresh, P.: Measuring radon and radium concentrations in 120 samples of drinking water sources, springs and rivers of Shandiz, Zoshk and Abrdeh regions. Environ. Res. J. 5(1), 1 (2011).10.3923/erj.2011.1.5Search in Google Scholar

73. Wallner, G., Wagner, R., Katzlberger, C.: Natural radionuclides in Austrian mineral water and their sequential measurement by fast methods. J. Environ. Radioact. 99(7), 1090 (2008).10.1016/j.jenvrad.2007.12.021Search in Google Scholar PubMed

74. Lasheen, Y. F., Seliman, A. F., Abdel-Rassoul, A. A.: Simultaneous measurement of 226Ra and 228Ra in natural water by liquid scintillation counting. J. Environ. Radioact. 95(2), 86 (2007).10.1016/j.jenvrad.2007.02.002Search in Google Scholar PubMed

75. Janković, M. M., Todorović, D. J., Todorović, N. A., Nikolov, J.: Natural radionuclides in drinking waters in Serbia. Appl. Radiat. Isot. 70(12), 2703 (2012).10.1016/j.apradiso.2012.08.013Search in Google Scholar PubMed

76. Yadav, D. N., Sarin, M. M.: Ra–Po–Pb isotope systematics in waters of Sambhar Salt Lake, Rajasthan (India): geochemical characterization and particulate reactivity. J. Environ. Radioact. 100(1), 17 (2009).10.1016/j.jenvrad.2008.09.005Search in Google Scholar

77. Sidhu, K. S., Breithart, M. S.: Naturally occurring radium-226 and radium-228 in water supplies of Michigan. Bull. Environ. Contam. Toxicol. 61(6), 722 (1998).10.1007/s001289900821Search in Google Scholar

78. Moldovan, M., Cosma, C., Encian, I., Dicu, T.: Radium-226 concentration in Romanian bottled mineral waters. J. Radioanal. Nucl. Chem. 279(2), 487 (2009).10.1007/s10967-007-7326-0Search in Google Scholar

79. Clulow, F. V., Dave, N. K., Lim, T. P., Avadhanula, R.: Radium-226 in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environ. Pollut. 99(1), 13 (1998).10.1016/S0269-7491(97)00176-0Search in Google Scholar

80. Agbalagba, E. O., Avwiri, G. O., Ononugbo, C. P.: Activity concentration and radiological impact assessment of 226Ra, 228Ra and 40K in drinking waters from (OML) 30, 58 and 61 oil fields and host communities in Niger Delta Region of Nigeria. J. Environ. Radioact. 116, 197 (2013).10.1016/j.jenvrad.2012.08.017Search in Google Scholar PubMed

81. Godoy, J. M., Godoy, M. L.: Natural radioactivity in Brazilian groundwater. J. Environ. Radioact. 85(1), 71 (2006).10.1016/j.jenvrad.2005.05.009Search in Google Scholar PubMed

Received: 2018-04-07
Accepted: 2018-05-03
Published Online: 2018-06-13
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2018-2967/html
Scroll to top button