Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 2, 2016

Adsorption of volatile polonium species on metals in various gas atmospheres: Part II – Adsorption of volatile polonium on platinum, silver and palladium

  • Emilio Andrea Maugeri EMAIL logo , Jörg Neuhausen , Ryszard Misiak , Robert Eichler , Rugard Dressler , David Piguet , Alexander Vögele and Dorothea Schumann
From the journal Radiochimica Acta

Abstract

This work presents the results obtained from studying the interaction between polonium compounds formed in different atmospheres and platinum, palladium and silver surfaces obtained by thermochromatography. These results are of crucial importance for the design of cover gas filter systems for lead-bismuth eutectic (LBE)-based nuclear facilities such as accelerator driven systems (ADS). The results obtained from studying the interaction of polonium and platinum under inert atmosphere and reducing atmospheres with and without addition of moisture show that polonium is deposited at temperatures between 993 and 1221 K, with adsorption enthalpies ranging from –235 to –291 kJ mol−1, indicating a very strong adsorption of the polonium species present on platinum surfaces. The interaction between polonium and silver was investigated using purified inert, reducing and oxidizing carrier gases. Results show a deposition temperature between 867 and 990 K, with adsorption enthalpies ranging from –205 to –234 kJ mol−1. The interaction of polonium and palladium was studied in purified helium and purified hydrogen. For both conditions a deposition temperature of 1221 K was observed corresponding to an adsorption enthalpy of –340 kJ mol−1. No highly volatile polonium species was formed at any of the applied experimental conditions.

Acknowledgments

This work was supported by the project SEARCH, co-funded by the European Commission under the Seventh Euratom Framework Programme for Nuclear Research & Training Activities (2007–2011) under Contract Number 295736.

References

1. Salvatores, M., Palmiotti, G.: Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog. Part. Nucl. Phys. 66, 144 (2011).10.1016/j.ppnp.2010.10.001Search in Google Scholar

2. IAEA. Implications of partitioning and transmutation in radioactive waste management. International Atomic Energy Agency, Technical Report Series No. 453. Vienna (2004).Search in Google Scholar

3. Rubbia, C.: A high gain energy amplifier operated with fast neutrons. AIP Conf. Proc. 346, 44 (1995).10.1063/1.49069Search in Google Scholar

4. Sasa, T.: Research activities for accelerator-driven transmutation system at JAERI. Prog. Nucl. Energ. 47, 314 (2005).10.1016/j.pnucene.2005.05.030Search in Google Scholar

5. Eichler, B., Gäggeler, H., Rossbach, H., Hübener, S.: Adsorption of volatile metals on metal surfaces and its application in nuclear chemistry. Radiochim. Acta 38, 131 (1985).10.1524/ract.1985.38.3.131Search in Google Scholar

6. Eichler, B., Gaggelerkoch, H., Gaggeler, H.: Thermochromatography of carrier-free elements: polonium in copper columns. Radiochim. Acta 26, 193 (1979).10.1524/ract.1979.26.34.193Search in Google Scholar

7. Rijpstra, K.: Density functional theory as a tool to get more out of experimantal data: case-studies for Al-Zn-O and for the interaction between Po and Po-Bi-eutectic. (Ph.D. Thesis), Faculteit Wetenschappen Vakgroep Natuurkunde & Sterrenkunde, Universiteit Gent, Gent, Belgium (2014).Search in Google Scholar

8. Eichler, B., Rossbach, H.: Adsorption of volatile metals on metal-surfaces and its application in nuclear chemistry. 1. Calculation of adsorption enthalpies for hypothetical superheavy elements with Z around 114. Radiochim. Acta 33, 121 (1983).10.1524/ract.1983.33.23.121Search in Google Scholar

9. Maugeri, E. A., Neuhausen, J., Eichler, R., Dressler, R., Rijpstra, K., Cottenier, S., Piguet, D., Vögele, A., Schumann, D.: Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I – Adsorption of volatile polonium and bismuth on gold. Radiochim. Acta 104, 757 (2016).10.1515/ract-2016-2573Search in Google Scholar

10. Zvara, I.: The inorganic radiochemistry of heavy elements. Springer, Netherlands (2010).Search in Google Scholar

11. Zvara, I.: Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim. Acta 38, 95 (1985).10.1524/ract.1985.38.2.95Search in Google Scholar

12. Chaston, J. C.: I-the oxidation of platinum. Platinum Metals Rev. 8, 50 (1964).Search in Google Scholar

13. Chaston, J. C.: The oxidation of the platinum metals. A descriptive survey of the reactions involved. Platinum Metals Rev. 19, 135 (1975).Search in Google Scholar

14. Gland, J. L., Sexton, B. A., Fisher, G. B.: Oxygen interactions with the Pt(111) surface. Surf. Sci. 95, 587 (1980).10.1016/0039-6028(80)90197-1Search in Google Scholar

15. Barin, I.: Thermochemical data of pure substances. Weinheim, New York (1995).10.1002/9783527619825Search in Google Scholar

16. Greenwood, N. N., Earnshaw, A.: Chemistry of the elements. Pergaman Press, Oxford (1984).Search in Google Scholar

17. Gäggeler, H., Dornhöfer, H., Schmidt-Ott, W. D., Greulich, N., Eichler, B.: Determination of adsorption enthalpies for polonium on surfaces of copper, silver, gold, palladium and platinum. Radiochim. Acta 38, 103 (1985).10.1524/ract.1985.38.2.103Search in Google Scholar

18. Rona, E.: Verdampfungsversuche an polonium. Sitzungsber. Akad. Wiss. Wien 141, 533 (1932).Search in Google Scholar

19. Rona, E., Hoffer, M.: Verdampfungsversuche an Polonium in Sauerstoff und Stickstoff. Sitzungsber. Akad. Wiss. Wien 144, 397 (1935).Search in Google Scholar

20. Hoffer, M.: Uˢer die Bestimmung des Poloniumgehaltes aus Salzen dicker Schichte. Sitzungsber. Akad. Wiss. Wien 144, 393 (1935).Search in Google Scholar

21. Maugeri, E. A., Neuhausen, J., Eichler, R., Piguet, D., Mendonça, T. M., Stora, T., Schumann, D.: Thermochromatography study of volatile polonium species in various gas atmospheres. J. Nucl. Mater. 450, 292 (2014).10.1016/j.jnucmat.2013.11.024Search in Google Scholar

22. Abakumov, A. S.: Thermal reactions of polonium. Russ. Chem. Rev. 51, 622 (1982).10.1070/RC1982v051n07ABEH002886Search in Google Scholar

23. Hammer-Rotzler, B.: Analysis of the nuclide inventory in MEGAPIE, a proton irradiated lead-bismuth eutectic spallation target. (Ph.D. Thesis), University of Bern, Bern, Switzerland (2015).Search in Google Scholar

24. Rizzi, M., Neuhausen, J., Eichler, R., Tuerler, A., Mendonca, T. M., Stora, T., Prieto, B. G., Aerts, A., Schumann, D.: Polonium evaporation from dilute liquid metal solutions. J. Nucl. Mater. 450, 304 (2014).10.1016/j.jnucmat.2014.01.047Search in Google Scholar

25. Gonzáles Prieto, B.: Evaporation of polonium from lead-bismuth eutectic nuclear coolant. (Ph.D. Thesis), KU Leuven, Leuven, Belgium (2015).Search in Google Scholar

Received: 2016-1-12
Accepted: 2016-5-13
Published Online: 2016-7-2
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2016-2575/html
Scroll to top button