Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 8, 2020

Chemical engineering methods in downstream processing in biotechnology

  • V. Beschkov EMAIL logo and D. Yankov
From the journal Physical Sciences Reviews

Abstract

Downstream processing in industrial biotechnology is a very important part of the overall bioproduct manufacturing. Sometimes the cost for this part of biotechnologies is up to 50% of the overall expenses. It comprises product concentration, separation and purification to different extents, as requested. The usually low product concentrations, the large volumes of fermentation broth and the product sensitivity toward higher temperatures lead to specific methods, similar but not identical to the ones in traditional chemical technology.

This article summarizes briefly the unit operations in downstream processing in industrial biotechnology, making a parallel between biotechnology and chemical technology.

References

1. Bishai M, De S, Adhikari B, Banerjee R. A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech. 2015;5:455–63. DOI:[10.1007/s13205-014-0240-y].Search in Google Scholar

2. Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering: treatment and reuse. 4th ed. Mumbai: Tata McGraw-Hill Education, 2011.Search in Google Scholar

3. Perlmutter BA. Improving process operations with a rotary pressure filter. BHS-Filtration Inc., Date of retrieve: 31 sep 2013, [Online]. 2000. http://www.bhs-filtration.com/improvingProcOpsRotary.pdf.Search in Google Scholar

4. BOKELA Rotary Drum Filters [Online]. http://www.bokela.de/uploads/media/TFI-prosp_e_06.p.Search in Google Scholar

5. Wiesmann U, Binder H. Biomass separation from liquids by sedimentation and centrifugation. In: Reaction engineering. Springer Berlin Heidelberg, Jan 1970:119–71. DOI:10.1007/3-540-11699-0_12.Search in Google Scholar

6. Torres-Acosta MA, Mayolo-Deloisa K, González-Valdez JE, Rito-Palomares M. Aqueous two-phase systems at large scale: challenges and opportunities. Biotechnol J. 2019;14:1800117. DOI:10.1002/biot.201800117.Search in Google Scholar

7. Chisti Y, Moo-Young M. Disruption of microbial cells for intracellular products. Enzyme Microb Technol. 1986;8:194–204.10.1016/0141-0229(86)90087-6Search in Google Scholar

8. Wimpenny JW. Breakage of microorganisms. Process Biochem. 1967;2:41–4.Search in Google Scholar

9. Tam YJ, Allaudin ZN, Lila MA, Bahaman AR, Tan JS, Rezaei MA. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology. BMC Biotechnol. 2012;12:70.10.1186/1472-6750-12-70Search in Google Scholar

10. Andrews BA, Asenjo JA. Enzymatic lysis and disruption of microbial cells. Trends Biotechnol. 1980;5:273–7.10.1016/0167-7799(87)90058-8Search in Google Scholar

11. Tangtua J. Evaluation and comparison of microbial cells disruption methods for extraction of pyruvate decarboxylase. Int Food Res J. 2014;21:1331–6.Search in Google Scholar

12. Gerde A, Montalbo-Lomboy M, Yao L, Grewell D, Wang T. Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour Technol. 2012;125:175–81.10.1016/j.biortech.2012.08.110Search in Google Scholar PubMed

13. Wang DI, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD. Fermentation and enzyme technology. New York: John Wiley, 1979:238.Search in Google Scholar

14. Howlader MS, French WT, Shields-Menard SA, Amirsadeghi M, Green M, Rai N. Microbial cell disruption for improving lipid recovery using pressurized CO2: role of CO2 solubility in cell suspension, sugar broth, and spent media. Biotechnol Prog. 2017;33:737–48. DOI:10.1002/btpr.2471.Search in Google Scholar PubMed

15. Choi H, Laleye L, Amantea GF, Simard RE. Release of aminopeptidase from Lactobacillus casei sp. casei by cell disruption in a microfluidizer. Biotechnology Techniques. 1997;11:451–3.10.1023/A:1018489327675Search in Google Scholar

16. Khot M, Ghosh D. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: oil yield, fatty acid profile, fuel properties. J Basic Microbiol. 2017. DOI:https://doi.org/10.1002/jobm.201600618.Search in Google Scholar PubMed

17. Lee AK, Lewis DM, Ashman PJ. Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy. 2012;46:89–101.10.1016/j.biombioe.2012.06.034Search in Google Scholar

18. Brown MR, Sullivan PG, Dorenbos KA, Modafferi EA, Geddes JW, Steward O. Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria. J Neurosci Methods. 2004;137:299–303.10.1016/j.jneumeth.2004.02.028Search in Google Scholar

19. Suslick KS. 1998. Kirk-Othmer encyclopedia of chemical technology. 4th ed. New York: J. Wiley & Sons, Vol. 26, 1998:517–41.Search in Google Scholar

20. Jeon B-H, Choi J-A, Kim H-C, Hwang J-H, Abou-Shanab RA, Dempsey BA, et al. Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels. 2013;6:37. DOI:10.1186/1754-6834-6-37.Search in Google Scholar

21. Lee A, Lewis D, Ashman P. Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy. 2012;46:89–101.10.1016/j.biombioe.2012.06.034Search in Google Scholar

22. Wardhan R, Mudgal P. 2017. Textbook of membrane biology. Singapore: Springer. pp. 49–60. DOI:org/10.1007/978-981-10-7101-0_3.Search in Google Scholar

23. Moore SM, Hess SM, Jorgenson JW. Extraction, enrichment, solubilization, and digestion techniques for membrane proteomics. J Proteome Res. 2016;15:1243–52.10.1021/acs.jproteome.5b01122Search in Google Scholar

24. Cheang B, Zydney AL. A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membrane Sci. 2004;231:159–67.10.1016/j.memsci.2003.11.014Search in Google Scholar

25. Tutunjian RS. Ultrafiltration processes in biotechnology. Ann New York Acad Sci. 1983;413:238–53.10.1111/j.1749-6632.1983.tb47897.xSearch in Google Scholar

26. Martin RG, Ames BN. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. The J Biol Chem. 1961;236:1372–9.10.1016/S0021-9258(18)64180-8Search in Google Scholar

27. Englard S, Seifter S. Precipitation techniques. Methods Enzymol. 1990;182:285–300.10.1016/0076-6879(90)82024-VSearch in Google Scholar

28. Hashimoto T, Sasaki H, Aiura M, Kato Y. High-speed aqueous gel-permeation chromatography. J Polymer Sci Polymer Phys. 1978;16:1789–800.10.1002/pol.1978.180161007Search in Google Scholar

29. Zeng X, Ruckenstein E. Membrane chromatography: preparation and applications to protein separation. Biotechnol Prog. 1999;15:1003–19.10.1021/bp990120eSearch in Google Scholar

30. Cuatrecasas P, Wilchek M, Anfinsen CB. Selective enzyme purification by affinity chromatography. Proc National Acad Sci U S A. 1968;61:636–43.10.1073/pnas.61.2.636Search in Google Scholar

31. Thin film evaporator. Patent No.: US 5. 256, 250. 26 Oct 1993.Search in Google Scholar

32. Thin-film evaporator. Patent No.: US 7. 591, 930. 22 Sep 2009.Search in Google Scholar

33. https://lcicorp.com/thin_film_evaporation/thin_film_wiped_film_evaporator.Search in Google Scholar

34. http://www.aaronequipment.com/usedequipment/evaporators/wipe-film-thin-film/alfa-laval-ct-6-47676001.Search in Google Scholar

35. https://www.alfalaval.com/products/heat-transfer/plate-heat-exchangers/gasketed-plate-and-frame-heat-exchangers/alfavap/.Search in Google Scholar

36. http://www.360evaporator.com/falling-film-evaporator.html.Search in Google Scholar

37. https://www.sms-vt.com/technologies/drying-technology/vertical-thin-film-dryer/?gclid=EAIaIQobChMIjb6389ea3wIVl5IYCh0w5wg_EAAYAiAAEgIKl_D_BwE.Search in Google Scholar

38. Katzen R, Madson PW, Moon GD Jr. Ethanol distillation: the fundamentals, CHEE332, Queens University, Kingston, Ont., Chapter 18. 269–88. https://chemeng.queensu.ca/courses/CHEE332/files/distillation.pdf.Search in Google Scholar

39. Cutzu R, Bardi L. Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation. 2017;3:24. DOI:10.3390/fermentation3020024.Search in Google Scholar

40. Nelson BK, Barbano DM. A microfiltration process to maximize removal of serum proteins from skim milk before cheese making. J Dairy Sci. 2005;88:1891–900.10.3168/jds.S0022-0302(05)72865-4Search in Google Scholar

41. Ghosh R. Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A. 2002;952:13–27.10.1016/S0021-9673(02)00057-2Search in Google Scholar

42. O’Sullivan TJ, Beaton NC, Epstein AC, Korchin SR. Applications of ultrafiltration in biotechnology. Chem Eng Prog. 1984;80:68–75.Search in Google Scholar

43. Jamaly S, Darwish NN, Ahmed I, Hasan SW. A short review on reverse osmosis pretreatment technologies. Desalination. 2014;354:30–8.10.1016/j.desal.2014.09.017Search in Google Scholar

44. Williams ME, Hestekin JA, Smothers CN, Bhattacharyya D. Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification. Ind Eng Chem Res. 1999;38:3683–95.10.1021/ie990140lSearch in Google Scholar

45. Schlicher LR, Cheryan M. Reverse osmosis of lactic acid fermentation broths. J Chem Technol Biotechnol. 1990;49. DOI:https://doi.org/10.1002/jctb.280490204.Search in Google Scholar

46. Schuegerl K. Solvent extraction in biotechnology, recovery of primary and secondary metabolites. Springer Berlin Heidelberg, 1994.10.1007/978-3-662-03064-6Search in Google Scholar

47. Yordanov B, Boyadzhiev L. Pertraction of citric acid by means of emulsion liquid membranes. J Membr Sci. 2004;238:191–7.10.1016/j.memsci.2004.04.004Search in Google Scholar

48. Vieira Dos Santos N, de Carvalho Santos-ebinuma V, Pessoa Junior A, Brandão Pereira JF. Liquid–liquid extraction of biopharmaceuticals from fermented broth: trends and future prospects. J Chem Technol Biotechnol. 2017;13. DOI:https://doi.org/10.1002/jctb.5476.Search in Google Scholar

49. Mullin JW, Nyvlt J. Design of classifying crystalisers. Trans Instn Chem Engrs. 1970;48:7–14.Search in Google Scholar

50. Alhalabi T, Koikkalainen K, Ern LS. CHEM-3140 – Bioprocess technology II. Drying and crystallization. Aalto University, School of Chemical Technology, 2017.Search in Google Scholar

51. Kent JA. editor. Kent and Riegel’s handbook of industrial chemistry and biotechnology. Springer US, 2010:1686.Search in Google Scholar

52. Kristiansen B, Linden J, Mattey M. Citric acid biotechnology. Philadelphia: Taylor&Francis Inc. Pp. 182, 183. 2002.Search in Google Scholar

53. Majumder A, Nagy ZK. A comparative study of coupled preferential crystallizers for the efficient resolution of conglomerate-forming enantiomers. Pharmaceutics. 2017;9:55. DOI:10.3390/pharmaceutics9040055.Search in Google Scholar PubMed PubMed Central

54. Di Profio G, Perrone G, Curcio E, Cassetta A, Lamba D, Drioli E. Preparation of enzyme crystals with tunable morphology in membrane crystallizers. Ind Eng Chem Res. 2005;44:10005–12. DOI:10.1021/ie0508233.Search in Google Scholar

55. Adamiec J, Kaminski W, Markowski AS, Strumiłło C. Ch. 39, Drying of biotechnological products. In: Handbook of industrial drying, (A.S. Mujumdar, editor). Bosa Roca USA. Taylor&Francis Inc., 2006:906–29.Search in Google Scholar

56. Nireesha GR, Divya L, Sowmya C, Venkateshan N, Niranjan Babu M, Lavakumar V. Lyophilization/freeze drying - an review. Int J Novel Trends Pharmac Sci. 2013;3:87–98.Search in Google Scholar

57. Hansen LJ, Daoussi R, Vervaet C, Remon JP, De Beer TR. Freeze-drying of live virus vaccines: A review. Vaccine. 2015;33:5507–19. DOI:10.1016/j.vaccine.2015.08.085.Search in Google Scholar PubMed

58. Ray L, May JC. Freeze drying/lyophilization of pharmaceutical and biological products. 3rd ed. New York: Informa Healthcare, 2010. ISBN 9781439825761. OCLC 664125915.Search in Google Scholar

59. https://project-pharmaceutics.com/services/lyophilization-process-development/?gclid=EAIaIQobChMIvePCss_R3wIV0_hRCh3gqg80EAAYASAAEgJsUfD_BwE.Search in Google Scholar

Published Online: 2020-12-08

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2018-0064/html
Scroll to top button