Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 16, 2020

Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)

  • Fahimeh Ghoroghchian , Yadollah Bayat ORCID logo EMAIL logo and Fatemeh Abrishami

Abstract

Glycidyl azide polymer (GAP) is well known as an energetic prepolymer, but its application as a binder in propellants is limited due to its relatively high glass transition temperature and relatively poor mechanical properties. Copolymerization of GAP with polypropylene glycol (PPG) has been shown to improve GAPs properties because of the good thermal and mechanical properties of PPG. In this research we synthesized triblock copolymer of PPG-GAP-PPG and the compatibilities of this copolymer were investigated with energetic plasticizers (20% w/w) n-butyl nitroxyethylnitramine (BuNENA), trimethylolethane trinitrate (TMETN), and butanetriol trinitrate (BTTN) by solubility parameter, differential scanning calorimetry (DSC), rheological analysis, scanning electron microscopy (SEM) and vacuum stability test (VST). The DSC results showed that BuNENA had better compatibility with the triblock copolymer in comparison to TMETN and BTTN. It reduced the Tg of PPG-GAP-PPG from −58 to −63 °C. The rheological analysis was in good agreement with the DSC results obtained for the compatibility of the plasticizers. In the case of the addition of 20% w/w BuNENA, the viscosity of copolymer/plasticizer decreased from 550 to 128 mPa s, indicating appropriate compatibility of plasticizer with the copolymer. SEM images showed a better distribution of BuNENA in the copolymer matrix.


Corresponding author: Yadollah Bayat, Faculty of Chemistry and Chemical Engineering, Malek‐Ashtar University of Technology, Lavizan Shabanloo, Tehran, o21, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cheng, T. Des. Monomers Polym. 2019, 22, 54–65; https://doi.org/10.1080/15685551.2019.1575652.Search in Google Scholar

2. Takita, K., Shiraki, K., Miyake, A., Ogawa, T. Prop. Explos. Pyrotech. 1999, 24, 291–294; https://doi.org/10.1002/(sici)1521-4087(199910)24:5<291::aid-prep291>3.0.co;2-o.10.1002/(SICI)1521-4087(199910)24:5<291::AID-PREP291>3.0.CO;2-OSearch in Google Scholar

3. Kubota, N., Sonobe, T. Prop. Explos. Pyrotech. 1988, 13, 172–177; https://doi.org/10.1002/prep.19880130604.Search in Google Scholar

4. Gaur, B., Lochab, B., Choudhary, V., Varma, I. J. Macromol. Sci. Polym. Rev. 2003, 43, 505–545; https://doi.org/10.1081/mc-120025976.Search in Google Scholar

5. Hori, K. A Paper Presented at: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.Search in Google Scholar

6. Deng, J., Li, G., Xia, M., Lan, Y., Luo, Y. J. Appl. Polym. Sci. 2016, 133, 43840; https://doi.org/10.1002/app.43840.Search in Google Scholar

7. Zhang, Z., Wang, G., Wang, Z., Zhang, Y., Ge, Z., Luo, Y. Polym. Bull. 2015, 72, 1835–1847; https://doi.org/10.1007/s00289-015-1375-7.Search in Google Scholar

8. Ampleman, G. US 5359012, 1993.Search in Google Scholar

9. Deng, J., Wang, X., Li, G., Luo, Y. Prop. Explos. Pyrotech. 2017, 42, 394–400; https://doi.org/10.1002/prep.201600123.Search in Google Scholar

10. Bui, V., Ahad, E., Rheaume, D., Raymond, M. J. Appl. Polym. Sci. 1996, 62, 27–32; https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<27::aid-app5>3.0.co;2-u.10.1002/(SICI)1097-4628(19961003)62:1<27::AID-APP5>3.0.CO;2-USearch in Google Scholar

11. Zhao, Y., Xie, W., Qi, X. Appl. Surf. Sci. 2019, 497, 143813; https://doi.org/10.1016/j.apsusc.2019.143813.Search in Google Scholar

12. Hafner, S., Keicher, T., Klapotke, T. M. Prop. Explos. Pyrotech. 2017, 42, 1–11. https://doi.org/10.1002/prep.201700198.Search in Google Scholar

13. Bayat, Y., Ghorbani, M., Mossahebi, M. 11th International Seminar on Polymer Science and Technology; Iran Polymer and Petrochemical Institute: Tehran, Iran, 2014.Search in Google Scholar

14. Bayat, Y., Chizari, M. Polym. Sci. B 2018, 60, 621–628; https://doi.org/10.1134/s1560090418050020.Search in Google Scholar

15. Kshirsagar, A .D., Mahulikar, P .P. Polym. Bull. 2017, 74, 1727–1742. https://doi.org/10.1007/s00289-016-1801-5.Search in Google Scholar

16. Filippi, S., Mori, L., Cappello, M., Polacco, G. Prop. Explos. Pyrotech. 2017, 42, 826–835; https://doi.org/10.1002/prep.201600263.Search in Google Scholar

17. Lemos, M. F., Mendes, L. C., Bohn, M., Keicher, T. J. Therm. Anal. Calorim. 2019, 137, 411–419; https://doi.org/10.1007/s10973-018-7968-2.Search in Google Scholar

18. Ertem, S. P., Yilgor, E., Kosak, C., Wilkes, G. L., Zhang, M. Yilgor, I. Polymer 2012, 53, 4614–4622. https://doi.org/10.1016/j.polymer.2012.08.020.Search in Google Scholar

19. Selim, K., Özkar, S., Yilmaz, L. J. Appl. Polym. Sci. 2000, 77, 538–546; https://doi.org/10.1002/(sici)1097-4628(20000718)77:3<538::aid-app9>3.0.co;2-x.10.1002/(SICI)1097-4628(20000718)77:3<538::AID-APP9>3.0.CO;2-XSearch in Google Scholar

20. Johari, G., Hallbrucker, A., Mayer, E. J. Polym. Sci., Polym. Phys. 1988, 26, 1923–1930; https://doi.org/10.1002/polb.1988.090260909.Search in Google Scholar

21. Herzberger, J., Niederer, K., Pohlit, H. Chem. Rev. 2015, 116, 2170–2243; https://doi.org/10.1021/acs.chemrev.5b00441.Search in Google Scholar

22. Uyar, T., Hacaloğlu, J. J. Anal. Appl. Pyrol. 2002, 64, 379–393; https://doi.org/10.1016/s0165-2370(02)00036-0.Search in Google Scholar

23. Barlow, A. J., Erginsav, A. Polymer 1975, 16, 110–114; https://doi.org/10.1016/0032-3861(75)90138-x.Search in Google Scholar

24. Sikder, A. K., Reddy, S. Prop. Explos. Pyrotech. 2013, 38, 14–28. https://doi.org/10.1039/C9RA05517G.Search in Google Scholar

25. Mulage, K., Patkar, R., Deuskar, V., Pundlik, S., Kakade, S., Gupta, M. J. Energ. Mater. 2007, 25, 233–245; https://doi.org/10.1080/07370650701205964.Search in Google Scholar

26. Highsmith, T. K., Doll, D. W., Cannizzo, L. F. US6425966, 2002.Search in Google Scholar

27. Agrawal, J. P.; John Wiley & Sons: Weinheim, 2010.Search in Google Scholar

28. Ang, H. G., Pisharath, S.; Wiley-VCH: Weinheim, 2012.Search in Google Scholar

29. Alkaabi, K.; Dissertation Stellenbosch: South Africa, 2009.Search in Google Scholar

30. Min, B. S., Park, Y. C. J. Ind. Eng. Chem. 2009, 15, 595–601; https://doi.org/10.1016/j.jiec.2009.01.017.Search in Google Scholar

31. Sikder, A., Sikder, N. J. Hazard. Mater. 2004, 112, 1–15; https://doi.org/10.1016/j.jhazmat.2004.04.003.Search in Google Scholar PubMed

32. Goleniewski, J. R., Roberts, J. A. U.S. Patent 5, 1994, 348, 596.Search in Google Scholar

33. Kojio, K., Nakamura, S., Furukawa, M. J Polym. Sci. Polym. Phys. 2008, 46, 2054–2063; https://doi.org/10.1002/polb.21540.Search in Google Scholar

34. Chi, M. S. J. Polym. Sci. Polym. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Search in Google Scholar

35. Gottlieb, L., Bar, S. Prop. Explos. Pyrotech. 2003, 28, 12–17; https://doi.org/10.1002/prep.200390000.Search in Google Scholar

36. Manu, S. K., Varghese, T. L., Mathew, S., Ninan, K. N. J. Propul. Power 2009, 25, 533–536; https://doi.org/10.2514/1.38145.Search in Google Scholar

37. Provatas, A.; DSTO Aeronautical and Maritime Research Laboratory: Australia, 2000.Search in Google Scholar

38. Bhowmik, D., Sadavarte, V. S., Pande, S. M., Saraswat, B. S. Cent. Eur. J Energ Mater. 2015, 12, 145–158.Search in Google Scholar

39. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Search in Google Scholar

40. Bodaghi, A., Shahidzadeh, M. Prop. Explos. Pyrotech. 2018, 43, 364–370; https://doi.org/10.1002/prep.201700219.Search in Google Scholar

41. Shee, S. K., Shah, P. N., Athar, J. Prop. Explos. Pyrotech. 2017, 42, 167–174; https://doi.org/10.1002/prep.201600058.Search in Google Scholar

42. Bennett, S. J., Barnes, M. W., Kolonko, K. J. U.S. Patent 051, 1989, 4, 853.Search in Google Scholar

43. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Search in Google Scholar

44. Ou, Y., Sun, Y., Guo, X., Jiao, Q. I. J. Anal. Appl. Pyrol. 2018, 132, 94–101; https://doi.org/10.1016/j.jaap.2018.03.011.Search in Google Scholar

45. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2019, 16, 33–48. https://doi.org/10.22211/cejem/104386.Search in Google Scholar

46. Miao, H., Zhao, H., Jiang, P. P. J. Vinyl Addit. Technol. 2017, 23, 321–328; https://doi.org/10.1002/vnl.21510.Search in Google Scholar

47. Ge, H., Yang, F., Hao, Y., Wu, G., Zhang, H., Dong, L. J. Appl. Polym. Sci. 2013, 127, 2832–2839; https://doi.org/10.1002/app.37620.Search in Google Scholar

48. Liu, Y., Wang, L., Tuo, X., Li, S. J. Serb. Chem. Soc. 2010, 75, 369–376; https://doi.org/10.2298/jsc090326007l.Search in Google Scholar

49. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2018, 15, 243–257. https://doi.org/10.22211/cejem/92075.Search in Google Scholar

50. Hildebrand, J., Scott, R. Annu. Rev. Phys. Chem. 1950, 1, 75–92; https://doi.org/10.1146/annurev.pc.01.100150.000451.Search in Google Scholar

51. Honary, S., Orafai, H., Shojaei, A. H. Drug Dev. Ind. Pharm. 2000, 26, 1019–1024; https://doi.org/10.1081/ddc-100101332.Search in Google Scholar PubMed

52. Dong, Q., Li, H., Liu, X., Huang, C. Prop. Explos. Pyrotech. 2018, 43, 294–299. https://doi.org/10.1002/prep.201700201.Search in Google Scholar

53. Singh, A., Kumar, R., Soni, P. K., Singh, V. J. Therm. Anal. Calorim. 2020, 3, 1–13. https://doi.org/10.1007/s10973-020-09377-5.Search in Google Scholar

54. Myburgh, A. J. Therm. Anal. Calorim. 2006, 85, 135–139; https://doi.org/10.1007/s10973-005-7357-5.Search in Google Scholar

55. Forster, A., Hempenstall, J., Tucker, I., Rades, T. Int. J. Pharm. 2001, 226, 147–161; https://doi.org/10.1016/s0378-5173(01)00801-8.Search in Google Scholar

56. Rao, K. P., Sikder, A. K., Kulkarni, M. A., Bhalerao, M. M., Gandhe, R. B. Prop. Explos. Pyrotech. 2004, 29, 93–98; https://doi.org/10.1002/prep.200400035.Search in Google Scholar

57. Straessler, N. A., Paraskos, A. J., Kramer, M. P. US 8658818, 2014.Search in Google Scholar

58. Gouranlou, F., Kohsary, I. Asian J. Chem. 2010, 22, 4221–4228.Search in Google Scholar

59. Gupta, J., Nunes, C., Vyas, S., Jonnalagadda, S. J. Phys. Chem. B 2011, 115, 2014–2023; https://doi.org/10.1021/jp108540n.Search in Google Scholar PubMed

60. Min, B. S, Ko, S. W. Macromol. Res. 2007, 15, 225–233; https://doi.org/10.1007/bf03218780.Search in Google Scholar

61. Singh, A., Radhakrishnan, S., Vijayalakshmi, R., Talawar, M., Kumar, A., Kumar, D. J. Energ. Mater. 2019, 37, 1–13; https://doi.org/10.1080/07370652.2019.1615581.Search in Google Scholar

62. Qi, X., Li, H., Zhao, Y., Yan, N. J. Hazard. Mater. 2019, 362, 303–310; https://doi.org/10.1016/j.jhazmat.2018.09.033.Search in Google Scholar PubMed

63. https://polymerdatabase.com/polymers/polypropyleneglycol.html.Search in Google Scholar

64. Wingborg, N., Eldsäter, C. Prop. Explos. Pyrotech. 2002, 27, 314–319; https://doi.org/10.1002/prep.200290000.Search in Google Scholar

65. Chi, M. S. H. J. Polym. Sci.Pol. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Search in Google Scholar

66. Hussein, A. K., Elbeih, A., Zeman, S. RSC Adv. 2018, 8, 17272–17278; https://doi.org/10.1039/c8ra02994f.Search in Google Scholar PubMed PubMed Central

67. NATO, STANAG-4556; NATO Standardization Agreements: Washington, DC, USA, 1999.Search in Google Scholar

68. Vogelsanger, B. Chimia 2004, 58, 401–408; https://doi.org/10.2533/000942904777677740.Search in Google Scholar

Received: 2020-03-05
Accepted: 2020-08-08
Published Online: 2020-09-16
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0051/html
Scroll to top button