Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 3, 2023

Combination of Digital Image Correlation (DIC) and in situ 3D-μ-CT in the analysis of the relationship between strains and porosity under creep loading

Kombination digitaler Bildkorrelation (DIC) und in situ 3D-μ-CT zur Analyse des Zusammenhangs von Dehnungen und Porosität unter Kriechbelastung
  • B. Camin

    is a professor holding the chair of materials engineering at the Bremerhaven University of Applied Sciences since April 2022. Doctorate in materials science and technology at TU Berlin. Her work is focusing on microstructure-property-relationships and in situ analyses of damage mechanisms in metallic materials under thermal and mechanical stress.

    , J. Hornig-Klamroth and N. zu Bentheim
From the journal Practical Metallography

Abstract

In situ 3D μ-XCT allows the time and space resolved measurement and analysis of material damage in the component volume, whereas the Digital Image Correlation (DIC) is a 2D method for the analysis of deformation measured on the surfaces of components. In situ 3D μ-XCT measurements were performed on cylindrical specimen made of SiC particle reinforced titanium MMC (MMC: Metal Matrix Composite) (15 % SiC particles) during creep load. The formation and evolution of voids were subsequently analyzed. Due to the rotationally symmetric sample geometry, the analysis of the deformation in the interior of the material by DIC using 2D slices is possible and evident. The dot pattern required to calculate the strain using DIC (speckle pattern) is provided by the intrinsic particle reinforcement of the MMCs. Temporally and locally changing and time-variant strain fields in both the tensile as well as the compressive range could be detected correlating with void formation and development area.

Kurzfassung

In situ 3D μ-XCT ermöglicht die zeit- und ortsaufgelöste Messung und Analyse von Werkstoffschädigungen im Bauteilvolumen. Die digitale Bildkorrelation (Digital Image Correlation, DIC) dagegen ist eine 2D-Methode zur Untersuchung von Formänderungen, die auf Bauteiloberflächen gemessen werden. In situ 3D μ-XCT-Messungen wurden an zylindrischen Proben eines mit 15 % SiC-Partikeln verstärkten Titan-MMC während einer Kriechbeanspruchung durchgeführt und die Porenentstehung und -entwicklung analysiert. Die Analyse der Verformung im Werkstoffinneren mittels DIC ist aufgrund der rotationssymmetrischen Probengeometrie anhand von 2D-Schnitten möglich und evident. Das für DIC notwendige Punktmuster (Speckle-Muster) zur Dehnungsberechnung stellt die intrinsische Partikelverstärkung des MMCs bereit. Es konnten sich zeitlich und lokal ändernde Dehnungsfelder sowohl im Zug- als auch Druckbereich detektiert werden, die mit der Porenentstehung und -entwicklung korrelieren.

About the author

Prof. Dr.-Ing. B. Camin

is a professor holding the chair of materials engineering at the Bremerhaven University of Applied Sciences since April 2022. Doctorate in materials science and technology at TU Berlin. Her work is focusing on microstructure-property-relationships and in situ analyses of damage mechanisms in metallic materials under thermal and mechanical stress.

7

7 Acknowledgement

We would like to thank the European Synchrotron Radiation Facility for providing the synchrotron radiation source and Marco DiMichiel for the support in using the beamline ID15A.

7

7 Danksagung

Wir danken der European Synchrotron Radiation Facility für die Bereitstellung der Synchrotronstrahlungsquelle und Marco DiMichiel für die Unterstützung bei der Nutzung der Beamline ID15A.

References / Literatur

[1] Baruchel, J.: X-ray tomography in material science; Hermes Science: Paris, 2000, ISBN: 2-7462-0115-1.Search in Google Scholar

[2] Ludwig, W.; Buffière, J.-Y.; Savelli, S.; Cloetens, P.: Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Materialia 51 (2003), pp. 585–598. DOI: 10.1016/S1359-6454(02)00320-8.10.1016/S1359-6454(02)00320-8Search in Google Scholar

[3] Buffiere, J. Y.; Ferrie, E.; Proudhon, H.; Ludwig, W.: Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Materials Science and Technology 22 (2006), pp. 1019–1024. DOI: 10.1179/174328406X114135.10.1179/174328406X114135.Search in Google Scholar

[4] Cloetens, P.; Ludwig, W.; Baruchel, J.; van Dyck, D.; van Landuyt, J.; Guigay, J. P.; Schlenker, M.: Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75 (1999), pp. 2912–2914. DOI: 10.1063/1.125225.10.1063/1.125225.Search in Google Scholar

[5] Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.: Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques. JOM 62 (2010), pp. 22–28. DOI: 10.1007/s11837-010-0176-6.10.1007/s11837-010-0176-6.Search in Google Scholar

[6] Salarian, M.; Toyserkani, E.: The use of nanocomputed tomography (nano-CT) in non-destructive testing of metallic parts made by laser powder-bed fusion additive manufacturing. Int J Adv Manuf Technol 98 (2018), pp. 3147–3153. DOI: 10.1007/s00170-018-2421-z.10.1007/s00170-018-2421-z.Search in Google Scholar

[7] Ogurreck, M.; Greving, I.; Marschall, F.; Vogt, H.; Last, A.; do Rosario, J. J.; Leib, E. W.; Beckmann, F.; Wilde, F.; Müller, M.: Layout and first results of the nanotomography endstation at the P05 beamline at PETRA III. In . XRM 2014: Proceedings of the 12th International Conference on X-Ray Microscopy, Melbourne, Australia, 26–31 October 2014; AIP Publishing LLC, 2016; p. 20008.10.1063/1.4937502Search in Google Scholar

[8] Wilde, F.; Ogurreck, M.; Greving, I.; Hammel, J. U.; Beckmann, F.; Hipp, A.; Lottermoser, L.; Khokhriakov, I.; Lytaev, P.; Dose, T.; et al.: Micro-CT at the imaging beamline P05 at PETRA III. In: Proceedings of the 12th International Conference on Synchrotron Radiation Instrumentation – SRI2015, New York, NY USA, 6–10 July 2015; Author(s), 2016; p. 30035.10.1063/1.4952858Search in Google Scholar

[9] Isaac, A.; Sket, F.; Reimers, W.; Camin, B.; Sauthoff, G.; Pyzalla, A. R.: In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography. Materials Science and Engineering: A 2008, 478, pp. 108–118. DOI: 10.1016/j.msea.2007.05.108.10.1016/j.msea.2007.05.108.Search in Google Scholar

[10] Borbély, A.; Dzieciol, K.; Sket, F.; Isaac, A.; Di Michiel, M.; Buslaps, T.; Kaysser-Pyzalla, A. R.: Characterization of creep and creep damage by in-situ microtomography. JOM 2011, 63, pp. 78–84. DOI: 10.1007/s11837-011-0117-z.10.1007/s11837-011-0117-z.Search in Google Scholar

[11] Sket, F.; Rodríguez-Hortalá, M.; Molina-Aldareguía, J. M.; Llorca, J.; Maire, E.; Requena, G.: In situ tomographic investigation of damage development in ±45° carbon fibre reinforced laminates. Materials Science and Technology 31 (2015), pp. 587–593. DOI: 10.1179/1743284714Y.0000000561.10.1179/1743284714Y.0000000561.Search in Google Scholar

[12] Helm, J. D.: Improved three-dimensional image correlation for surface displacement measurement. Opt. Eng 35 (1996), p. 1911. DOI: 10.1117/1.600624.10.1117/1.600624.Search in Google Scholar

[13] Peters, W. H.; Ranson, W. F.: Digital Imaging Techniques In Experimental Stress Analysis. Opt. Eng 21 (1982), pp. 427–431. DOI: 10.1117/12.7972925.10.1117/12.7972925.Search in Google Scholar

[14] Sutton, M. A.; Mingqi, C.; Peters, W. H.; Chao, Y. J.; McNeill, SR.: Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing 4 (1986), pp. 143–150. DOI: 10.1016/0262-8856(86)90057-0.10.1016/0262-8856(86)90057-0Search in Google Scholar

[15] Synnergren, P.; Sjödahl, M.: A stereoscopic digital speckle photography system for 3-D displacement field measurements. Optics and Lasers in Engineering 31 (1999), pp. 425–443. DOI: 10.1016/S0143-8166(99)00040-8.10.1016/S0143-8166(99)00040-8Search in Google Scholar

[16] Camin, B.; Hansen, L.: In Situ 3D-μ-Tomography on Particle-Reinforced Light Metal Matrix Composite Materials under Creep Conditions. Metals 10 (2020), p. 1034. DOI: 10.3390/met10081034.10.3390/met10081034.Search in Google Scholar

[17] Camin, B. In-situ Untersuchung des Schädigungsverhaltens mehrphasiger Werkstoffe unter thermischer und mechanischer Beanspruchung, 2015.Search in Google Scholar

[18] zu Bentheim, N.; Camin, B.; Hornig-Klamroth, J.: Eine Auswertungsmethode von in situ 3D-μ-Tomographiedaten zur Analyse von Dehnungen in Metallmatrixverbundwerkstoffen unter Kriechbelastung, Methoden des Fortschritts III, Schriftenreihe des Fachbereichs VIII der Berliner Hochschule für Technik 2022 (zur Veröffentlichung akzeptiert)Search in Google Scholar

[19] Cocks, A.; Ashby, M. F.: On creep fracture by void growth. Progress in Materials Science 27 (1982), pp. 189–244. DOI: 10.1016/0079-6425(82)90001-9.10.1016/0079-6425(82)90001-9Search in Google Scholar

[20] Kim, J.-H.; Serpantié, A.; Barlat, F.; Pierron, F.; Lee, M.-G.: Characterization of the post-necking strain hardening behavior using the virtual fields method. International Journal of Solids and Structures 50 (2013), pp. 3829–3842. DOI: 10.1016/j.ijsolstr.2013.07.018.10.1016/j.ijsolstr.2013.07.018.Search in Google Scholar

[21] Morgeneyer, T. F.; Taillandier-Thomas, T.; Buljac, A.; Helfen, L.; Hild, F.: On strain and damage interactions during tearing: 3D in situ measurements and simulations for a ductile alloy (AA2139-T3). Journal of the Mechanics and Physics of Solids 96 (2016), pp. 550–571. DOI: 10.1016/j.jmps.2016.07.012.10.1016/j.jmps.2016.07.012.Search in Google Scholar

[22] Paul, S. K.; Roy, S.; Sivaprasad, S.; Tarafder, S.: A Simplified Procedure to Determine Post-necking True Stress–Strain Curve from Uniaxial Tensile Test of Round Metallic Specimen Using DIC. J. of Materi Eng and Perform 27 (2018), pp. 4893–4899. DOI: 10.1007/s11665-018-3566-5.10.1007/s11665-018-3566-5.Search in Google Scholar

[23] Tu, S.; Ren, X.; He, J.; Zhang, Z.: Stress–strain curves of metallic materials and post-necking strain hardening characterization: A review. Fatigue Fract Eng Mater Struct 43 (2020), pp. 3–19. DOI: 10.1111/ffe.13134.10.1111/ffe.13134.Search in Google Scholar

[24] Wang, Y.; Xu, S.; Ren, S.; Wang, H.: An Experimental-Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking. Advances in Materials Science and Engineering 2016, 2016, pp. 1–12. DOI: 10.1155/2016/6015752.10.1155/2016/6015752.Search in Google Scholar

[25] Ye, J.; André, S.; Farge, L.: Kinematic study of necking in a semi-crystalline polymer through 3D Digital Image Correlation. International Journal of Solids and Structures 59 (2015), pp. 58–72. DOI: 10.1016/j.ijsolstr.2015.01.009.10.1016/j.ijsolstr.2015.01.009.Search in Google Scholar

[26] Pineau, A.; Pardoen, T. Failure of Metals. Comprehensive Structural Integrity; Elsevier, 2007, pp. 684–684. ISBN 9780080437491.10.1016/B0-08-043749-4/02109-1Search in Google Scholar

Received: 2022-11-26
Accepted: 2022-12-01
Published Online: 2023-02-03
Published in Print: 2023-01-30

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/pm-2023-0008/html
Scroll to top button