Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 22, 2023

Mechanisms of chemical vapor generation by aqueous boranes for trace element analysis: a rather long and unfinished story

  • Alessandro D’Ulivo EMAIL logo

Abstract

This paper reports a summary of the studies on the mechanisms that govern the generation of hydrides and other volatile species through reaction with aqueous boranes (CVG). This derivatization reaction has been used since the early 1970s for elemental determination and speciation from the trace level down to the ultratrace level and below. An IUPAC project, concluded in 2011, reported on the mechanisms of hydrogen transfer from borane to the analytical substrate and served to remove erroneous concepts that had dominated CVG until the early 2000s. Following the conclusion of the IUPAC project, many studies have been published on the mechanisms of CVG under conditions approaching those of analyzes of real samples. These studies included the definition of more general reaction models, which valid under non-analytical conditions, the mechanism of action of additives and interferences in CVG of volatile hydrides. In addition to the analytical utility for CVG, the results represent a contribution to the knowledge of the chemistry of aqueous boranes. Other studies will be necessary to clarify still unknown aspects, among them the identity of volatile transition metal species formed by reaction of metal ions with aqueous boranes.


Corresponding author: Alessandro D’Ulivo, C.N.R., Institute of Chemistry of Organometallic Compounds, Pisa, Italy, e-mail:

References

[1] A. D’Ulivo, R. E. Sturgeon (Eds.). Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects, Elsevier Inc., Amsterdam (2022).10.1016/B978-0-323-85834-2.00001-XSearch in Google Scholar

[2] W. R. Hatch, W. L. Ott. Anal. Chem. 40, 2085 (1968), https://doi.org/10.1021/ac50158a025.Search in Google Scholar

[3] W. Holak. Anal. Chem. 41, 1712 (1969), https://doi.org/10.1021/ac60281a025.Search in Google Scholar PubMed

[4] R. S. Braman. Anal. Chem. 43, 1462 (1971), https://doi.org/10.1021/ac60305a013.Search in Google Scholar PubMed

[5] R. S. Braman, L. L. Justen, C. C. Foreback. Anal. Chem. 44, 2195 (1972), https://doi.org/10.1021/ac60321a011.Search in Google Scholar

[6] J. Dědina, D. L. Tsalev. Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester (1995).Search in Google Scholar

[7] A. S. Luna, R. E. Sturgeon, R. C. De Campos. Anal. Chem. 72, 3523 (2000), https://doi.org/10.1021/ac000221n.Search in Google Scholar PubMed

[8] R. E. Sturgeon, Z. Mester. Appl. Spectrosc. 56, 202A (2002), https://doi.org/10.1366/000370202760249675.Search in Google Scholar

[9] R. E. Sturgeon, J. Liu, V. J. Boyko, V. T. Luong. Anal. Chem. 68, 1883 (1996), https://doi.org/10.1021/ac951259g.Search in Google Scholar PubMed

[10] A. D’Ulivo, J. Dědina, Z. Mester, R. E. Sturgeon, Q. Wang, B. Welz. Pure Appl. Chem. 83, 1283 (2011), https://doi.org/10.1351/pac-rep-09-10-03.Search in Google Scholar

[11] W. B. Robbins, J. A. Caruso. Anal. Chem. 51, 889A (1979), https://doi.org/10.1021/ac50044a002.Search in Google Scholar

[12] T. Nakahara. Prog. Anal. At. Spectrosc. 6, 163 (1983).Search in Google Scholar

[13] A. D’Ulivo, V. Loreti, M. Onor, E. Pitzalis, R. Zamboni. Anal. Chem. 75, 2591 (2003), https://doi.org/10.1021/ac020694p.Search in Google Scholar PubMed

[14] A. D’Ulivo, C. Baiocchi, E. Pitzalis, M. Onor, R. Zamboni. Spectrochim. Acta, Part B 59, 471 (2004), https://doi.org/10.1016/j.sab.2003.12.004.Search in Google Scholar

[15] A. D’Ulivo, M. Onor, E. Pitzalis. Anal. Chem. 76, 6342 (2004), https://doi.org/10.1021/ac040078o.Search in Google Scholar PubMed

[16] F. T. Wang, W. L. Jolly. Inorg. Chem. 11, 1933 (1972), https://doi.org/10.1021/ic50114a042.Search in Google Scholar

[17] A. D’Ulivo. Spectrochim. Acta, Part B 59, 793 (2004), https://doi.org/10.1016/j.sab.2004.04.001.Search in Google Scholar

[18] A. D’Ulivo, Z. Mester, R. E. Sturgeon. Spectrochim. Acta, Part B 60, 423 (2005), https://doi.org/10.1016/j.sab.2005.03.015.Search in Google Scholar

[19] A. D’Ulivo, Z. Mester, J. Meija, R. E. Sturgeon. Anal. Chem. 79, 3008 (2007), https://doi.org/10.1021/ac061962c.Search in Google Scholar PubMed

[20] J. Meija, Z. Mester, A. D’Ulivo. J. Am. Soc. Mass Spectrom. 17, 1028 (2006), https://doi.org/10.1016/j.jasms.2006.02.008.Search in Google Scholar PubMed

[21] J. Meija, Z. Mester, A. D’Ulivo. J. Am. Soc. Mass Spectrom. 18, 337 (2007), https://doi.org/10.1016/j.jasms.2006.09.018.Search in Google Scholar

[22] Y. L. Feng, R. E. Sturgeon, J. W. Lam, A. D’Ulivo. J. Anal. At. Spectrom. 20, 255 (2005), https://doi.org/10.1039/b417172a.Search in Google Scholar

[23] R. Regmi, B. F. Milne, J. Feldmann. Anal. Bioanal. Chem. 388, 775 (2007), https://doi.org/10.1007/s00216-006-1076-z.Search in Google Scholar PubMed

[24] K. Marschner, S. Musil, I. Mikšík, J. Dědina. Anal. Chim. Acta 1008, 8 (2018), https://doi.org/10.1016/j.aca.2018.01.009.Search in Google Scholar PubMed

[25] K. Marschner, S. Musil, J. Dědina. Anal. Chem. 88, 6366 (2016), https://doi.org/10.1021/acs.analchem.6b00735.Search in Google Scholar PubMed

[26] A. D’Ulivo, J. Meija, Z. Mester, E. Pagliano, R. E. Sturgeon. Anal. Bioanal. Chem. 402, 921 (2012), https://doi.org/10.1007/s00216-011-5503-4.Search in Google Scholar PubMed

[27] E. Pagliano, A. D’Ulivo, Z. Mester, R. E. Sturgeon, J. Meija. J. Am. Soc. Mass Spectrom. 23, 2178 (2012), https://doi.org/10.1007/s13361-012-0489-5.Search in Google Scholar PubMed

[28] E. Pagliano, M. Onor, J. Meija, Z. Mester, R. E. Sturgeon, A. D’Ulivo. Spectrochim. Acta, Part B At. Spectrosc. 66, 740 (2011), https://doi.org/10.1016/j.sab.2011.09.009.Search in Google Scholar

[29] E. Pagliano, M. Onor, M. McCooeye, A. D’Ulivo, R. E. Sturgeon, Z. Mester. Int. J. Mass Spectrom. 371, 42 (2014), https://doi.org/10.1016/j.ijms.2014.07.048.Search in Google Scholar

[30] E. Pitzalis, M. Onor, M. C. Mascherpa, G. Pacchi, Z. Mester, A. D’Ulivo. Anal. Chem. 86, 1599 (2014), https://doi.org/10.1021/ac4032466.Search in Google Scholar PubMed

[31] A. D’Ulivo. Spectrochim. Acta, Part B 119, 91 (2016).10.1016/j.sab.2016.03.003Search in Google Scholar

[32] E. Pitzalis, D. Angelini, M. C. Mascherpa, A. D’Ulivo. J. Anal. At. Spectrom. 33, 2160 (2018), https://doi.org/10.1039/c8ja00294k.Search in Google Scholar

[33] L. D’Ulivo, R. Spiniello, M. Onor, B. Campanella, Z. Mester, A. D’Ulivo. Anal. Chim. Acta 998, 28 (2018), https://doi.org/10.1016/j.aca.2017.10.034.Search in Google Scholar PubMed

[34] L. D’Ulivo, E. Pagliano, M. Onor, Z. Mester, A. D’Ulivo. Anal. Bioanal. Chem. 411, 1569 (2019), https://doi.org/10.1007/s00216-019-01598-4.Search in Google Scholar PubMed

[35] A. D’Ulivo. J. Anal. At. Spectrom. 34, 823 (2019), https://doi.org/10.1039/c9ja00039a.Search in Google Scholar

[36] E. Pitzalis, B. Campanella, R. Bonini, M. Onor, A. D’Ulivo. Anal. Chim. Acta 1269, 341427 (2023), https://doi.org/10.1016/j.aca.2023.341427.Search in Google Scholar PubMed

Published Online: 2023-11-22
Published in Print: 2024-01-29

© 2023 IUPAC & De Gruyter

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2023-1001/html
Scroll to top button