Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 25, 2019

The influence of bio-fibers from different pulping processes on the pulp-polylactic acid composites (PPCs) properties from sugarcane bagasse

  • Maryam Allahdady , Sahab Hedjazi EMAIL logo , Mehdi Jonoobi , Ali Abdulkhani EMAIL logo and Loya Jamalirad

Abstract

Pulp-polylactic acid composites (PPCs) with monoethanolamine, alkaline sulfite-anthraquinone, unbleached and bleached soda bagasse pulps and polylactic acid (PLA) were successfully fabricated using twin-screw extrusion. The results were compared with bagasse flour-PLA composites (WPCs) as reference. The results indicated that the mechanical strengths of produced composites with pulp fibers were increased compared to the neat PLA and bagasse flour-PLA composites. Monoethanolamine and alkaline sulfite-anthraquinone fibers due to their surface chemical structure had a superior compatibility with PLA compared with other used bio-fibers which has been confirmed by SEM micrographs too. FTIR was used to investigate the effect of different chemical treatments on the bio-fibers. The results of XRD analysis showed that the crystallinity of PPCs was substantially improved by incorporation with pulp fibers compared to WPCs composites. The water absorption of the PPCs is different due to using the diverse bio-fibers. According to DMA analysis, the tan delta was substantially decreased when PLA was reinforced by different bio-fibers. The biodegradation of green composites were characterized and the results showed that the biodegradability of the PLA was increased due to addition of bagasse pulp biofibers.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. (2012) Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 87(2):963–979.10.1016/j.carbpol.2011.08.078Search in Google Scholar

Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z. (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35:73–79.10.1016/j.polymertesting.2014.03.002Search in Google Scholar

Aldana, D., Villa, E., De Dios Hernández, M., Sánchez, G., Cruz, Q., Gallardo, S., Castillo, H., Casarrubias, L. (2014) Barrier properties of polylactic acid in cellulose based packages using montmorillonite as filler. Polymers 6(9):2386–2403.10.3390/polym6092386Search in Google Scholar

Alemdar, A., Sain, M. (2008) Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresour. Technol. 99(6):1664–1671.10.1016/j.biortech.2007.04.029Search in Google Scholar PubMed

Allahdady, M., Hedjazi, S., Jonoobi, M., Abdolkhani, M., Jamalirad, L. (2017) Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid. Iran. J. Wood Pap. Ind. 8(1):1–13.Search in Google Scholar

Altun, Y., Doǧan, M., Bayramli, E. (2013) Effect of Alkaline Treatment and Pre-impregnation on Mechanical and Water Absorbtion Properties of Pine Wood Flour Containing Poly (Lactic Acid) Based Green-Composites. J. Polym. Environ. 21(3):850–856.10.1007/s10924-012-0563-xSearch in Google Scholar

Arrieta, M.P., Samper, M.D., López, J., Jiménez, A. (2014) Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 22(4):460–470.10.1007/s10924-014-0654-ySearch in Google Scholar

Ashori, A., Nourbakhsh, A., Tabrizi, A.K. (2014) Thermoplastic Hybrid Composites using Bagasse, Corn Stalk and E-glass Fibers: Fabrication and Characterization. Polym.-Plast. Technol. Eng. 53(1):1–8.10.1080/03602559.2013.832854Search in Google Scholar

Awal, A., Rana, M., Sain, M. (2015) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech. Mater. 80:87–95.10.1016/j.mechmat.2014.09.009Search in Google Scholar

Bax, B., Müssig, J. (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 68(7-8):1601–1607.10.1016/j.compscitech.2008.01.004Search in Google Scholar

Beg, M.D.H., Pickering, K.L. (2008) Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym. Degrad. Stab. 93(10):1939–1946.10.1016/j.polymdegradstab.2008.06.012Search in Google Scholar

Bernabé, G.A., Almeida, S., Ribeiro, C.A., Crespi, M.S. (2011) Evaluation of organic molecules originated during composting process. J. Therm. Anal. Calorim. 106(3):773–778.10.1007/s10973-011-1420-1Search in Google Scholar

Cherian, B.M., Pothan, L.A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M., Thomas, S. (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Food Chem. 56(14):5617–5627.10.1021/jf8003674Search in Google Scholar PubMed

Csizmadia, R., Faludi, G., Renner, K., Móczó, J., Pukánszky, B. (2013) PLA/wood biocomposites: Improving composite strength by chemical treatment of the fibers. Composites, Part A, Appl. Sci. Manuf. 53:46–53.10.1016/j.compositesa.2013.06.003Search in Google Scholar

D’Amico, D.A., Iglesias Montes, M.L., Manfredi, L.B., Cyras, V.P. (2016) Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polym. Test. 49:22–28.10.1016/j.polymertesting.2015.11.004Search in Google Scholar

Datta, J., Kopczyńska, P. (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind. Crop. Prod. 74:566–576.10.1016/j.indcrop.2015.05.080Search in Google Scholar

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A.P., Oksman, K., Faria, M., Thomas, S., Pothan, L.A. (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090.10.1007/s10570-015-0554-xSearch in Google Scholar

Du, Y., Wu, T., Yan, N., Kortschot, M.T., Farnood, R. (2013) Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer. Composites, Part B 48:10–17.10.1016/j.compositesb.2012.12.003Search in Google Scholar

Du, Y., Wu, T., Yan, N., Kortschot, M.T., Farnood, R. (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites, Part B 56:717–723.10.1016/j.compositesb.2013.09.012Search in Google Scholar

Fabiyi, J.S., McDonald, A.G., McIlroy, D. (2009) Wood modification effects on weathering of HDPE-based wood plastic composites. J. Polym. Environ. 17(1):34–48.10.1007/s10924-009-0118-ySearch in Google Scholar

Fabiyi, J.S., McDonald, A.G., Wolcott, M.P., Griffiths, P.R. (2008) Wood plastic composites weathering: Visual appearance and chemical changes. Polym. Degrad. Stab.. 93(8):1405–1414.10.1016/j.polymdegradstab.2008.05.024Search in Google Scholar

Faludi, G., Dora, G., Renner, K., Móczó, J., Pukánszky, B. (2013) Improving interfacial adhesion in pla/wood biocomposites. Compos. Sci. Technol. 89:77–82.10.1016/j.compscitech.2013.09.009Search in Google Scholar

Fay, J.J., Thomas, D.A., Sperling, L.H. (1991) Evaluation of the area under linear loss modulus-temperature curves. J. Appl. Polym. Sci. 43(9):1617–1623.10.1002/app.1991.070430905Search in Google Scholar

Gamon, G., Evon, P., Rigal, L. (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Ind. Crop. Prod. 46:173–185.10.1016/j.indcrop.2013.01.026Search in Google Scholar

Hedjazi, S., Kordsachia, O., Patt, R., Kreipl, A. (2009a) MEA/water/AQ-pulping of wheat straw. Holzforschung 63(5):505–512.10.1515/HF.2009.110Search in Google Scholar

Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A.J., Tschirner, U. (2009b) Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Ind. Crop. Prod.. 29(1):27–36.10.1016/j.indcrop.2008.03.013Search in Google Scholar

Hosseini, S. (2013) Effects of Dioctyl phthalate and density changes on the physical and mechanical properties of woodflour/PVC composites. J. Indian Acad. Wood Sci. 10(1):22–25.10.1007/s13196-013-0088-5Search in Google Scholar

Hosseini, S., Hedjazi, S., Jamalirad, L., Sukhtesaraie, L. (2014) Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J. Indian Acad. Wood Sci. 11(2):116–121.10.1007/s13196-014-0126-ySearch in Google Scholar

Huda, M.S., Drzal, L.T., Misra, M., Mohanty, A.K., Williams, K., Mielewski, D.F. (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind. Eng. Chem. Res. 44(15):5593–5601.10.1021/ie0488849Search in Google Scholar

Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M. (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol. 66(11–12):1813–1824.10.1016/j.compscitech.2005.10.015Search in Google Scholar

Islam, M.S., Pickering, K.L., Foreman, N.J. (2010a) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites, Part A 41(5):596–603.10.1016/j.compositesa.2010.01.006Search in Google Scholar

Islam, M.S., Pickering, K.L., Foreman, N.J. (2010b) Influence of Hygrothermal Ageing on the Physico-Mechanical Properties of Alkali Treated Industrial Hemp Fibre Reinforced Polylactic Acid Composites. J. Polym. Environ. 18(4):696–704.10.1007/s10924-010-0225-9Search in Google Scholar

Karimi, S., Dufresne, A., Tahir, P.M., Karimi, A., Abdulkhani, A. (2014) Biodegradable starch-based composites: Effect of micro and nanoreinforcements on composite properties. J. Mater. Sci. 49(13):4513–4521.10.1007/s10853-014-8151-1Search in Google Scholar

Klingberg, A., Odermatt, J., Meier, D. (2005) Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 74(1–2):104–109.10.1016/j.jaap.2004.11.023Search in Google Scholar

Kubo, S., Kadla, J.F. (2005) Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2821.10.1021/bm050288qSearch in Google Scholar PubMed

Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A. (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105:15–27.10.1016/j.compscitech.2014.08.032Search in Google Scholar

Le Troëdec, M., Peyratout, C.S., Smith, A., Chotard, T. (2009) Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix. J. Eur. Ceram. Soc. 29(10):1861–1868.10.1016/j.jeurceramsoc.2008.11.016Search in Google Scholar

Li, Y., Pickering, K.L., Farrell, R.L. (2009) Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Ind. Crop. Prod.. 29(2–3):420–426.10.1016/j.indcrop.2008.08.005Search in Google Scholar

Loh, Y.R., Sujan, D., Rahman, M.E., Das, C.A. (2013) Sugarcane bagasse – The future composite material: A literature review. Resour. Conserv. Recycl. 75:14–22.10.1016/j.resconrec.2013.03.002Search in Google Scholar

López, J.P., Boufi, S., El Mansouri, N.E., Mutjé, P., Vilaseca, F. (2012) PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites, Part B 43(8):3453–3461.10.1016/j.compositesb.2012.01.040Search in Google Scholar

Murariu, M., Laoutid, F., Dubois, P., Fontaine, G., Bourbigot, S., Devaux, E., Campagne, C., Ferreira, M., Solarski, S. (2014) Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites. In: Polymer Green Flame Retardants 21. pp. 709–773.10.1016/B978-0-444-53808-6.00021-4Search in Google Scholar

Nyambo, C., Mohanty, A.K., Misra, M. (2010) Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 11(6):1654–1660.10.1021/bm1003114Search in Google Scholar

Pandey, K.K., Pitman, A.J. (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. J. Polym. Sci., Part A, Polym. Chem. 42(10):2340–2346.10.1002/pola.20071Search in Google Scholar

Peterlin, S., Drnovšek, T., Perdih, A., Dolenc, D. (2009) Surface characterization of stepwise oxidized spruce thermomechanical pulp samples by different analytical methods. Cellulose 16:833–839.10.1007/s10570-009-9291-3Search in Google Scholar

Razak, N.I.A., Ibrahim, N.A., Zainuddin, N., Rayung, M., Saad, W.Z. (2014) The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(Lactic Acid) composites. Molecules 19(3):2957–2968.10.3390/molecules19032957Search in Google Scholar

Saliba, E.O.S., Rodriguez, N.M., Gonçalves, L.C., Morais, S.A.L., Piló-Veloso, D. (2002) Lignin from corn crop residue used with indicator in experiment of apparent digestibility: Comparative study. Arq. Bras. Med. Vet. Zootec. 54:52–56.10.1590/S0102-09352002000100008Search in Google Scholar

Seggiani, M., Cinelli, P., Verstichel, S., Puccini, M., Vitolo, S., Anguillesi, I., Lazzeri, A. (2015) Development of fibres-reinforced biodegradable composites. Chem. Eng. Trans. 43:1813–1818.Search in Google Scholar

Silva, M.F., Da Silva, C.A., Fogo, F.C., Pineda, E.A.G., Hechenleitner, A.A.W. (2005) Thermal and FTIR study of polyvinylpyrrolidone/lignin blends. J. Therm. Anal. Calorim. 79(2):367–370.10.1007/s10973-005-0066-2Search in Google Scholar

Tran, T.P.T., Bénézet, J.C., Bergeret, A. (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. Ind. Crop. Prod. 58:111–124.10.1016/j.indcrop.2014.04.012Search in Google Scholar

Xiao, B., Sun, X.F., Sun, R.C. (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74(2):307–319.10.1016/S0141-3910(01)00163-XSearch in Google Scholar

Received: 2019-05-26
Accepted: 2019-06-30
Published Online: 2019-07-25
Published in Print: 2019-09-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2019-0048/html
Scroll to top button