Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 20, 2021

What the eye tells the brain: retinal feature extraction

  • Klaudia P. Szatko

    Klaudia P. Szatko is currently a Ph.D. researcher of Dr. Katrin Franke in the Neural Circuits of Vision lab at Tübingen University. She is a member of the International Max Planck Research School for Neural and Behavioral Sciences at the Graduate Training Center, Tübingen. Klaudia holds a B.Sc. degree in Biology and an M.Sc. degree in Neurobiology. She performed her M.Sc. thesis work in the lab of Prof. Marian H. Lewandowski at Jagiellonian University in Kraków.

    and Katrin Franke

    Katrin Franke received her Ph.D. at the IMPRS for Neural and Behavioral Sciences at the Graduate Training Center Tübingen. Since then, she has been junior group leader at the Bernstein Center for Computational Neuroscience and the Institute for Ophthalmic Research at Tübingen University. She is also a research fellow in the Tolias lab at Baylor College of Medicine, Houston, US. Her work focuses on how neural circuits across the early visual system of mice process visual information towards driving behavior.

    EMAIL logo
From the journal Neuroforum

Abstract

To provide a compact and efficient input to the brain, sensory systems separate the incoming information into parallel feature channels. In the visual system, parallel processing starts in the retina. Here, the image is decomposed into multiple retinal output channels, each selective for a specific set of visual features like motion, contrast, or edges. In this article, we will summarize recent findings on the functional organization of the retinal output, the neural mechanisms underlying its diversity, and how single visual features, like color, are extracted by the retinal network. Unraveling how the retina – as the first stage of the visual system – filters the visual input is an important step toward understanding how visual information processing guides behavior.

Zusammenfassung

Sensorische Systeme verteilen eingehende Informationen auf parallele Kanäle. Im visuellen System beginnt dies bereits in der Netzhaut. Dort wird die Bildinformation auf verschiedene Ausgangskanäle verteilt, die jeweils einen bestimmten Satz visueller Merkmale wie Bewegung, Kontrast oder Kanten repräsentieren. In diesem Artikel werden wir die neuesten Erkenntnisse über die funktionelle Organisation des retinalen Ausgangssignals und die neuronalen Mechanismen, die seiner Vielfalt zugrunde liegen, zusammenfassen und erklären wie einzelne visuelle Merkmale, wie Farbe, durch das neuronale Netzwerk der Netzhaut extrahiert werden. Ein tiefes Verständnis davon, wie die Netzhaut – als erste Stufe des visuellen Systems – den visuellen Input filtert, ist ein wichtiger Schritt, um zu verstehen, wie die visuelle Informationsverarbeitung das Verhalten steuert.


Corresponding author: Katrin Franke, Institute for Ophthalmic Research, Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany; and Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany, E-mail:

Über die Autoren

Klaudia P. Szatko

Klaudia P. Szatko is currently a Ph.D. researcher of Dr. Katrin Franke in the Neural Circuits of Vision lab at Tübingen University. She is a member of the International Max Planck Research School for Neural and Behavioral Sciences at the Graduate Training Center, Tübingen. Klaudia holds a B.Sc. degree in Biology and an M.Sc. degree in Neurobiology. She performed her M.Sc. thesis work in the lab of Prof. Marian H. Lewandowski at Jagiellonian University in Kraków.

Katrin Franke

Katrin Franke received her Ph.D. at the IMPRS for Neural and Behavioral Sciences at the Graduate Training Center Tübingen. Since then, she has been junior group leader at the Bernstein Center for Computational Neuroscience and the Institute for Ophthalmic Research at Tübingen University. She is also a research fellow in the Tolias lab at Baylor College of Medicine, Houston, US. Her work focuses on how neural circuits across the early visual system of mice process visual information towards driving behavior.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abballe, L. and Asari, H. (2021). Natural image statistics for mouse vision. bioRxiv 2021, https://doi.org/10.1101/2021.04.08.438953.10.1371/journal.pone.0262763Search in Google Scholar PubMed PubMed Central

Baden, T., Schubert, T., Chang, L., Wei, T., Zaichuk, M., Wissinger, B., and Euler, T. (2013). A tale of two retinal domains: Near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217, https://doi.org/10.1016/j.neuron.2013.09.030.Search in Google Scholar PubMed

Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M., and Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350, https://doi.org/10.1038/nature16468.Search in Google Scholar PubMed PubMed Central

Baden, T., Euler, T., and Berens, P. (2020). Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20, https://doi.org/10.1038/s41583-019-0242-1.Search in Google Scholar PubMed

Bae, J.A., Mu, S., Kim, J.S., Turner, N.L., Tartavull, I., Kemnitz, N., Jordan, C.S., Norton, A.D., Silversmith, W.M., Prentki, R., et al.. (2018). Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293–1306.e19, https://doi.org/10.1016/j.cell.2018.04.040.Search in Google Scholar PubMed PubMed Central

Barlow, H.B. (1953). Summation and inhibition in the frog’s retina. J. Physiol. 119, 69–88, https://doi.org/10.1113/jphysiol.1953.sp004829.Search in Google Scholar PubMed PubMed Central

Bringmann, A. (2019). Structure and function of the bird fovea. Anat. Histol. Embryol. 48, 177–200, https://doi.org/10.1111/ahe.12432.Search in Google Scholar PubMed

Chapot, C.A., Euler, T., and Schubert, T. (2017). How do horizontal cells “talk” to cone photoreceptors? Different levels of complexity at the cone--horizontal cell synapse. J. Physiol. 595, 5495–5506, https://doi.org/10.1113/jp274177.Search in Google Scholar

Chichilnisky, E.J. (2001). A simple white noise analysis of neuronal light responses. Network 12, 199–213, https://doi.org/10.1080/713663221.Search in Google Scholar

Corradi, L. and Filosa, A. (2021). Neuromodulation and behavioral flexibility in larval zebrafish: From neurotransmitters to circuits. Front. Mol. Neurosci. 14, 718951, https://doi.org/10.3389/fnmol.2021.718951.Search in Google Scholar PubMed PubMed Central

David, S.V., Vinje, W.E., and Gallant, J.L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. J. Neurosci. 24, 6991–7006, https://doi.org/10.1523/jneurosci.1422-04.2004.Search in Google Scholar

Denman, D.J., Luviano, J.A., Ollerenshaw, D.R., Cross, S., Williams, D., Buice, M.A., Olsen, S.R., and Reid, R.C. (2018). Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. Elife 7, e31209, doi:https://doi.org/10.7554/eLife.31209.Search in Google Scholar PubMed PubMed Central

Diamond, J.S. (2017). Inhibitory interneurons in the retina: Types, circuitry, and function. Annu. Rev. Vis. Sci. 3, 1–24, https://doi.org/10.1146/annurev-vision-102016-061345.Search in Google Scholar PubMed

Euler, T., Detwiler, P.B., and Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852, https://doi.org/10.1038/nature00931.Search in Google Scholar PubMed

Euler, T., Haverkamp, S., Schubert, T., and Baden, T. (2014). Retinal bipolar cells: Elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519, https://doi.org/10.1038/nrn3783.Search in Google Scholar PubMed

Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., and Baden, T. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444, https://doi.org/10.1038/nature21394.Search in Google Scholar PubMed PubMed Central

Franke, K., Maia Chagas, A., Zhao, Z., Zimmermann, M.J., Bartel, P., Qiu, Y., Szatko, K.P., Baden, T., and Euler, T. (2019). An arbitrary-spectrum spatial visual stimulator for vision research. Elife 8, e48779, doi:https://doi.org/10.7554/eLife.48779.Search in Google Scholar PubMed PubMed Central

Froudarakis, E., Berens, P., Ecker, A.S., Cotton, R.J., Sinz, F.H., Yatsenko, D., Saggau, P., Bethge, M., and Tolias, A.S. (2014). Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat. Neurosci. 17, 851–857.https://doi.org/10.1038/nn.3707.Search in Google Scholar PubMed PubMed Central

Gastinger, M.J., Tian, N., Horvath, T., and Marshak, D.W. (2006). Retinopetal axons in mammals: Emphasis on histamine and serotonin. Curr. Eye Res. 31, 655–667, https://doi.org/10.1080/02713680600776119.Search in Google Scholar PubMed PubMed Central

Gerl, E.J. and Morris, M.R. (2008). The causes and consequences of color vision. Evolution: Educ. Outreach 1, 476–486, https://doi.org/10.1007/s12052-008-0088-x.Search in Google Scholar

Gernandt, B. and Granit, R. (1947). Inhibition and the polarity of the retinal elements. Nature 159, 806, https://doi.org/10.1038/159806a0.Search in Google Scholar

Goetz, J., Jessen, Z.F., Jacobi, A., Mani, A., Cooler, S., Greer, D., Kadri, S., Segal, J., Shekhar, K., Sanes, J., et al.. (2021). Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. bioRxiv, https://doi.org/10.1101/2021.06.10.447922. 2021.06.10.447922.Search in Google Scholar PubMed

Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G., and Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445, https://doi.org/10.1523/jneurosci.1117-05.2005.Search in Google Scholar

Hyman, S.E. (2005). Neurotransmitters. Curr. Biol. 15, R154–R158, https://doi.org/10.1016/j.cub.2005.02.037.Search in Google Scholar

Jacobs, G.H., Neitz, J., and Deegan, J.F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655–656, https://doi.org/10.1038/353655a0.Search in Google Scholar

Jacobs, G.H., Williams, G.A., and Fenwick, J.A. (2004). Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vis. Res. 44, 1615–1622, https://doi.org/10.1016/j.visres.2004.01.016.Search in Google Scholar

Jacoby, J., Nath, A., Jessen, Z.F., and Schwartz, G.W. (2018). A self-regulating gap junction network of amacrine cells controls nitric oxide release in the retina. Neuron 100, 1149–1162.e5, https://doi.org/10.1016/j.neuron.2018.09.047.Search in Google Scholar

Joesch, M. and Meister, M. (2016). A neuronal circuit for colour vision based on rod-cone opponency. Nature 532, 236–239, https://doi.org/10.1038/nature17158.Search in Google Scholar

Johnson, K.P., Fitzpatrick, M.J., Zhao, L., Wang, B., McCracken, S., Williams, P.R., and Kerschensteiner, D. (2021). Cell-type-specific binocular vision guides predation in mice. Neuron 109, 1527–1539.e4, https://doi.org/10.1016/j.neuron.2021.03.010.Search in Google Scholar

Kayser, C., Einhäuser, W., and König, P. (2003). Temporal correlations of orientations in natural scenes. Neurocomputing 52-54, 117–123, https://doi.org/10.1016/s0925-2312(02)00789-0.Search in Google Scholar

Khani, M.H. and Gollisch, T. (2021). Linear and nonlinear chromatic integration in the mouse retina. Nat. Commun. 12, 1900, https://doi.org/10.1038/s41467-021-22042-1.Search in Google Scholar PubMed PubMed Central

Kölsch, Y., Hahn, J., Sappington, A., Stemmer, M., Fernandes, A.M., Helmbrecht, T.O., Lele, S., Butrus, S., Laurell, E., Arnold-Ammer, I., et al.. (2021). Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662.e9, https://doi.org/10.1016/j.neuron.2020.12.003.Search in Google Scholar PubMed PubMed Central

Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68, https://doi.org/10.1152/jn.1953.16.1.37.Search in Google Scholar PubMed

Lamb, T.D. (2016). Why rods and cones? Eye 30, 179–185, https://doi.org/10.1038/eye.2015.236.Search in Google Scholar PubMed PubMed Central

Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts, W.H. (1959). What the frog’s eye tells the frog’s brain. Proc. IRE 47, 1940–1951, https://doi.org/10.1109/jrproc.1959.287207.Search in Google Scholar

McIntosh, L.T., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus, S.A. (2016). Deep learning models of the retinal response to natural scenes. Adv. Neural Inf. Process. Syst. 29, 1369–1377.Search in Google Scholar

Mills, S.L. and Massey, S.C. (1995). Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377, 734–737, https://doi.org/10.1038/377734a0.Search in Google Scholar PubMed

Mouland, J.W., Pienaar, A., Williams, C., Watson, A.J., Lucas, R.J., and Brown, T.M. (2021). Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision. Curr. Biol. 31, 3391–3400.e4, https://doi.org/10.1016/j.cub.2021.05.024.Search in Google Scholar PubMed PubMed Central

Nadal-Nicolás, F.M., Kunze, V.P., Ball, J.M., Peng, B.T., Krishnan, A., Zhou, G., Dong, L., and Li, W. (2020). True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. Elife 9, e56840, doi:https://doi.org/10.7554/eLife.56840.Search in Google Scholar PubMed PubMed Central

Nitzany, E.I. and Victor, J.D. (2014). The statistics of local motion signals in naturalistic movies. J. Vis. 14, 10, doi:https://doi.org/10.1167/14.4.10.Search in Google Scholar PubMed PubMed Central

Olveczky, B.P., Baccus, S.A., and Meister, M. (2003). Segregation of object and background motion in the retina. Nature 423, 401–408, https://doi.org/10.1038/nature01652.Search in Google Scholar PubMed

Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 287, 1001–1012, https://doi.org/10.1002/ar.a.20262.Search in Google Scholar

Qiu, Y., Zhao, Z., Klindt, D., Kautzky, M., Szatko, K.P., Schaeffel, F., Rifai, K., Franke, K., Busse, L., and Euler, T. (2021). Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. 31, 3233–3247.e6, https://doi.org/10.1016/j.cub.2021.05.017.Search in Google Scholar

Ran, Y., Huang, Z., Baden, T., Schubert, T., Baayen, H., Berens, P., Franke, K., and Euler, T. (2020). Type-specific dendritic integration in mouse retinal ganglion cells. Nat. Commun. 11, 2101, https://doi.org/10.1038/s41467-020-15867-9.Search in Google Scholar

Reitner, A., Sharpe, L.T., and Zrenner, E. (1991). Is colour vision possible with only rods and blue-sensitive cones? Nature 352, 798–800, https://doi.org/10.1038/352798a0.Search in Google Scholar

Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., Sun, L., Robson, P., and Trakhtenberg, E.F. (2018). Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759, https://doi.org/10.1038/s41467-018-05134-3.Search in Google Scholar

Rikhye, R.V. and Sur, M. (2015). Spatial correlations in natural scenes modulate response reliability in mouse visual cortex. J. Neurosci. 35, 14661–14680, https://doi.org/10.1523/jneurosci.1660-15.2015.Search in Google Scholar

Röhlich, P., van Veen, T., and Szél, A. (1994). Two different visual pigments in one retinal cone cell. Neuron 13, 1159–1166, https://doi.org/10.1016/0896-6273(94)90053-1.Search in Google Scholar

Schröder, S., Steinmetz, N.A., Krumin, M., Pachitariu, M., Rizzi, M., Lagnado, L., Harris, K.D., and Carandini, M. (2020). Arousal modulates retinal output. Neuron 107, 487–495.e9, https://doi.org/10.1016/j.neuron.2020.04.026.Search in Google Scholar PubMed PubMed Central

Simoncelli, E.P. and Olshausen, B.A. (2001). Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216, https://doi.org/10.1146/annurev.neuro.24.1.1193.Search in Google Scholar PubMed

Srinivasan, M.V., Laughlin, S.B., and Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proc. R. Soc. Lond. B Biol. Sci. 216, 427–459, https://doi.org/10.1098/rspb.1982.0085.Search in Google Scholar PubMed

Stabio, M.E., Sabbah, S., Quattrochi, L.E., Ilardi, M.C., Fogerson, P.M., Leyrer, M.L., Kim, M.T., Kim, I., Schiel, M., Renna, J.M., et al.. (2018). The M5 cell: A color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97, 251, https://doi.org/10.1016/j.neuron.2017.12.030.Search in Google Scholar PubMed PubMed Central

Szatko, K.P., Korympidou, M.M., Ran, Y., Berens, P., Dalkara, D., Schubert, T., Euler, T., and Franke, K. (2020). Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481, https://doi.org/10.1038/s41467-020-17113-8.Search in Google Scholar PubMed PubMed Central

Tanaka, T., Aoyagi, T., and Kaneko, T. (2009). Higher-order structures in natural scenes. Neurosci. Res. 65, S109, https://doi.org/10.1016/j.neures.2009.09.494.Search in Google Scholar

Tikidji-Hamburyan, A., Reinhard, K., Storchi, R., Dietter, J., Seitter, H., Davis, K.E., Idrees, S., Mutter, M., Walmsley, L., Bedford, R.A., et al.. (2017). Rods progressively escape saturation to drive visual responses in daylight conditions. Nat. Commun. 8, 1813, https://doi.org/10.1038/s41467-017-01816-6.Search in Google Scholar PubMed PubMed Central

Vintch, B., Movshon, J.A., and Simoncelli, E.P. (2015). A convolutional subunit model for neuronal responses in macaque V1. J. Neurosci. 35, 14829–14841, https://doi.org/10.1523/jneurosci.2815-13.2015.Search in Google Scholar

Wienbar, S. and Schwartz, G. (2021). Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. bioRxiv 2021, https://doi.org/10.1101/2021.10.19.464988.10.1101/2021.10.19.464988Search in Google Scholar

Wilson, M. and Lindstrom, S.H. (2011). What the bird’s brain tells the bird’s eye: The function of descending input to the avian retina. Vis. Neurosci. 28, 337–350, https://doi.org/10.1017/s0952523811000022.Search in Google Scholar

Yamagata, M., Yan, W., and Sanes, J.R. (2021). A cell atlas of the chick retina based on single-cell transcriptomics. Elife 10, e63907, doi:https://doi.org/10.7554/eLife.63907.Search in Google Scholar PubMed PubMed Central

Yoshimatsu, T., Schröder, C., Nevala, N.E., Berens, P., and Baden, T. (2020). Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107, 320–337.e6, https://doi.org/10.1016/j.neuron.2020.04.021.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Kim, I.-J., Sanes, J.R., and Meister, M. (2012). The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc. Natl. Acad. Sci. U. S. A 109, E2391–E2398, https://doi.org/10.1073/pnas.1211547109.Search in Google Scholar PubMed PubMed Central

Online erschienen: 2021-12-20
Erschienen im Druck: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/nf-2021-0032/html
Scroll to top button