Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 18, 2024

Crystal structure of 3-(diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one, C21H19O3P

  • Jiangdong Li , Qianlu Xing , Xin Jin , Qiang Huang ORCID logo and Xiaojuan Ma EMAIL logo

Abstract

C21H19O3P, triclinic, P 1 (no. 2), a = 9.5751(18) Å, b = 10.0602(19) Å, c = 10.307(2) Å, α = 82.979(3)°, β = 78.057(3)°, γ = 65.622(3)°, V = 884.0(3) Å3, Z = 2, R gt(F) = 0.0429, wR ref(F 2) = 0.1110, T = 296 K.

CCDC no.: 2336731

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.26 × 0.24 × 0.22 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.17 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 25.0°, 99 %
N(hkl)measured, N(hkl)unique, R int: 4537, 3084, 0.018
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2375
N(param)refined: 227
Programs: CrysAlis PRO [1], Olex2 [2], Shelx [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.9401 (3) 0.3534 (2) 0.2388 (2) 0.0540 (6)
H1 0.8790 0.4494 0.2163 0.065*
C2 1.1008 (3) 0.3052 (3) 0.2162 (3) 0.0655 (7)
H2A 1.1469 0.3691 0.1776 0.079*
C3 1.1921 (3) 0.1653 (3) 0.2498 (2) 0.0611 (6)
H3 1.2999 0.1337 0.2330 0.073*
C4 1.1246 (3) 0.0708 (3) 0.3085 (2) 0.0605 (6)
H4 1.1868 −0.0241 0.3332 0.073*
C5 0.9652 (2) 0.1166 (2) 0.3310 (2) 0.0530 (6)
H5 0.9203 0.0521 0.3705 0.064*
C6 0.8703 (2) 0.2587 (2) 0.29503 (19) 0.0424 (5)
C7 0.6226 (2) 0.2664 (2) 0.17208 (19) 0.0444 (5)
C8 0.7182 (4) 0.1382 (3) 0.1130 (3) 0.0798 (8)
H8 0.8063 0.0762 0.1477 0.096*
C9 0.6858 (5) 0.0993 (3) 0.0027 (3) 0.1022 (11)
H9 0.7517 0.0106 −0.0351 0.123*
C10 0.5603 (4) 0.1876 (4) −0.0514 (3) 0.0767 (8)
H10 0.5397 0.1609 −0.1263 0.092*
C11 0.4659 (3) 0.3146 (4) 0.0049 (3) 0.0882 (9)
H11 0.3793 0.3768 −0.0316 0.106*
C12 0.4959 (3) 0.3545 (3) 0.1169 (3) 0.0796 (8)
H12 0.4285 0.4426 0.1550 0.096*
C13 0.5986 (2) 0.2329 (2) 0.46332 (18) 0.0414 (5)
H13 0.6556 0.1273 0.4537 0.050*
C14 0.4267 (2) 0.2676 (2) 0.4849 (2) 0.0471 (5)
H14A 0.4026 0.2398 0.4081 0.057*
H14B 0.3689 0.3721 0.4934 0.057*
C15 0.3756 (2) 0.1885 (3) 0.6080 (2) 0.0497 (5)
C16 0.2070 (2) 0.2409 (2) 0.6651 (2) 0.0475 (5)
C17 0.1631 (3) 0.2244 (3) 0.8000 (2) 0.0696 (7)
H17 0.2384 0.1881 0.8543 0.084*
C18 0.0089 (4) 0.2610 (3) 0.8552 (3) 0.0903 (10)
H18 −0.0200 0.2516 0.9466 0.108*
C19 −0.1011 (3) 0.3110 (3) 0.7759 (4) 0.0916 (10)
H19 −0.2045 0.3311 0.8130 0.110*
C20 −0.0607 (3) 0.3318 (3) 0.6424 (4) 0.0826 (9)
H20 −0.1368 0.3675 0.5889 0.099*
C21 0.0933 (3) 0.2999 (3) 0.5867 (3) 0.0643 (6)
H21 0.1203 0.3183 0.4964 0.077*
O1 0.58533 (17) 0.48743 (14) 0.32087 (14) 0.0548 (4)
O2 0.64383 (15) 0.27337 (15) 0.56942 (13) 0.0473 (4)
H2 0.5784 0.3528 0.5953 0.071*
O3 0.46963 (19) 0.0841 (2) 0.65904 (18) 0.0780 (6)
P1 0.66182 (6) 0.32594 (5) 0.31350 (5) 0.04139 (18)

1 Source of material

3-(Diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one was prepared by the direct difunctionalization of tertiary enaminones with H-phosphine oxide and water. To the solution of (E)-3-(dimethylamino)-1-phenylprop-2-en-1-one (175 mg, 1 mmol), diphenylphosphine oxide (404 mg, 2 mmol), dried aluminium muriate (266 mg, 2 mmol) in the mixed solvent of tetramethylene oxide (8 ml) and pure water (1 ml) was stirred at 323 K for 3 h. After completion of reaction, the above mixture was filtrated and washed three times by ethyl acetate. The organic liquid was evaporated under vacuum to obtain the residue. The residue was purified by flash column chromatography on silicagel (ethyl acetate/petroleum ether = 1:2) to obtain white solid target compound in 95 % yield.

2 Experimental details

The carbon-bound hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

3 Comment

α-Hydroxylphosphine oxide is an important organophosphorus product, and widely used in the synthesis of α-aminophosphine oxides [4, 5], and exhibits various intriguing biological activities. This compound was synthesized by the reaction between (E)-3-(dimethylamino)-1-phenylprop-2-en-1-one and diphenylphosphine oxide in the presence of water.

In the molecules forming the title crystal structure, the key bond lengths and angles are within normal ranges, and are consistent with those previously reported in similar structures [6]. The C–P bond is confirmed by the distance of P1–C1, P1–C7, P2–C13. Their lengths are 1.799(2) Å, 1.803(2) Å, and 1.832(2) Å respectively. The bond angles for O1–P1–C6, O1–P1–C13, O1–P1–C7 are 112.35(9) Å, 112.22(9) Å, and 110.99(9) Å, which is consistent with O=P–C group. The hydroxyl and carbonyl groups are also found by the distance of C13–O2, C15=O3. The bond lengths are 1.414(2) Å and 1.212(2) Å.


Corresponding author: Xiaojuan Ma, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The National Natural Science Foundation of China (No. 82360679, No. 31660443). The Natural Science Foundation of Guizhou Province (No. ZK[2022]59). The Young Talents Program of Zunyi Medical College (No. 18zy-009).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. CrysAlisPRO Software; Rigaku Oxford Diffraction [CP/DK]: Japan, 2015.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Goud, E. V., Sivaramakrishna, A., Vijayakrishna, K. Aminophosphine oxides: a platform for diversified functions. Top. Curr. Chem. 2017, 375, 10; https://doi.org/10.1007/s41061–016–0090–7.10.1007/s41061-016-0090-7Search in Google Scholar PubMed

5. Huang, W. B., Qiu, L. Q., Ren, F. Y., He, L. N. Facile synthesis of α-aminophosphine oxides from diarylphosphine oxides, arynes and formamides. Chem. Commun. 2021, 57, 9578–9581; https://doi.org/10.1039/d1cc04101k.Search in Google Scholar PubMed

6. Mokuolu, Q. F., Duckmanton, P. A., Hitchcock, P. B., Wilson, C., Blake, A. J., Shukla, L., Love, J. B. Early-late, mixed-metal compounds supported by amidophosphine ligands. Dalton Trans. 2004, 1960–1970; https://doi.org/10.1039/b402409e.Search in Google Scholar PubMed

Received: 2024-01-22
Accepted: 2024-03-01
Published Online: 2024-03-18
Published in Print: 2024-06-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2024-0028/html
Scroll to top button