Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) January 15, 2024

The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate

  • Richa Hu ORCID logo , Changzhou Liao , Yao Tian , Junkai Li EMAIL logo and Zhigang Zeng ORCID logo EMAIL logo

Abstract

C18H18N2O3S⋅C2HF3O2, monoclinic, P21 (no. 4), a = 6.0979(2) Å, b = 32.3052(9) Å, c = 11.0805(3) Å, β = 99.5620(10)°, V = 2152.46(11) Å3, Z = 4, R gt (F) = 0.0570, wR ref (F2) = 0.1470, T = 200(1) K.

CCDC no.: 2298098

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.12 × 0.06 × 0.05 mm
Wavelength: Ga Kα radiation (1.34139 Å)
μ: 1.22 mm−1
Diffractometer, scan mode: Bruker D8 Venture Photon III, φ and ω
θmax, completeness: 57.1°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 62,518, 8248, 0.058
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 6216
N(param)refined: 629
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 −0.6370 (14) 0.4383 (3) 0.3581 (7) 0.109 (3)
H1A −0.661656 0.437693 0.268459 0.164*
H1B −0.671080 0.465978 0.386058 0.164*
H1C −0.734077 0.417927 0.388303 0.164*
C2 −0.3363 (13) 0.3856 (2) 0.3607 (7) 0.090 (2)
H2A −0.407677 0.363856 0.402350 0.134*
H2B −0.174582 0.381919 0.378000 0.134*
H2C −0.387911 0.383738 0.272309 0.134*
C3 −0.3967 (10) 0.42789 (18) 0.4068 (5) 0.0646 (14)
H3 −0.301684 0.449019 0.374346 0.077*
C4 −0.3483 (9) 0.43032 (16) 0.5477 (5) 0.0524 (12)
H4 −0.455171 0.412195 0.582555 0.063*
C5 −0.1138 (9) 0.41653 (16) 0.5952 (4) 0.0488 (11)
C6 0.1010 (8) 0.35709 (16) 0.6596 (5) 0.0559 (13)
C7 0.2411 (10) 0.36888 (17) 0.7624 (6) 0.0652 (15)
H7 0.203605 0.391312 0.810548 0.078*
C8 0.4411 (10) 0.34750 (17) 0.7962 (6) 0.0649 (14)
H8 0.541570 0.355743 0.867004 0.078*
C9 0.4933 (9) 0.31451 (18) 0.7273 (6) 0.0618 (14)
C10 0.3475 (10) 0.30325 (19) 0.6235 (6) 0.0700 (16)
H10 0.382456 0.280463 0.575958 0.084*
C11 0.1509 (10) 0.32478 (19) 0.5878 (6) 0.0717 (16)
H11 0.052607 0.317391 0.515284 0.086*
C12 0.6974 (9) 0.29010 (18) 0.7656 (5) 0.0634 (14)
C13 0.7959 (10) 0.25967 (18) 0.6986 (6) 0.0692 (15)
H13 0.745194 0.250445 0.617403 0.083*
C14 0.9774 (10) 0.24685 (19) 0.7762 (7) 0.0735 (17)
C15a 1.152 (2) 0.2179 (4) 0.7697 (8) 0.082 (2)
C15Ab 1.14 (3) 0.217 (4) 0.751 (5) 0.082 (2)
C16a 1.1643 (13) 0.1890 (2) 0.6744 (7) 0.077 (2)
H16a 1.046981 0.184048 0.608059 0.092*
C16Ab 1.191 (18) 0.201 (3) 0.639 (4) 0.077 (2)
H16Ab 1.179360 0.216467 0.564639 0.092*
C17a 1.369 (2) 0.1688 (4) 0.6896 (15) 0.149 (5)
H17a 1.416212 0.151600 0.629302 0.179*
C17Ab 1.26 (3) 0.160 (3) 0.654 (6) 0.149 (5)
H17Ab 1.239493 0.138549 0.594300 0.179*
C18a 1.4863 (17) 0.1762 (3) 0.7956 (12) 0.116 (4)
H18a 1.622520 0.162513 0.825373 0.139*
C18Ab 1.37 (2) 0.156 (3) 0.766 (6) 0.116 (4)
H18Ab 1.501902 0.139356 0.789229 0.139*
N3 −0.3692 (7) 0.47384 (13) 0.5904 (4) 0.0520 (10)
H3A −0.268109 0.490138 0.561168 0.062*
H3B −0.343279 0.474510 0.673652 0.062*
H3C −0.508780 0.483351 0.562320 0.062*
N4 0.8100 (9) 0.2950 (2) 0.8760 (6) 0.0870 (16)
O1 −0.1092 (6) 0.37611 (11) 0.6254 (4) 0.0617 (9)
O2 0.0470 (6) 0.43798 (10) 0.5979 (3) 0.0538 (8)
O3 0.9896 (8) 0.26727 (16) 0.8848 (5) 0.0893 (13)
S1a 1.3751 (4) 0.21190 (8) 0.8743 (2) 0.0994 (8)
S1Ab 1.250 (5) 0.1846 (11) 0.860 (3) 0.0994 (8)
C19 0.3839 (14) 0.5363 (3) 1.0528 (6) 0.106 (3)
H19A 0.510411 0.552984 1.037077 0.160*
H19B 0.413496 0.507000 1.039178 0.160*
H19C 0.362111 0.540329 1.137631 0.160*
C20 0.1124 (12) 0.59379 (19) 0.9909 (6) 0.0787 (18)
H20A 0.084832 0.596241 1.075296 0.118*
H20B −0.022641 0.601265 0.934157 0.118*
H20C 0.233634 0.612453 0.978879 0.118*
C21 0.1766 (10) 0.54957 (17) 0.9670 (5) 0.0603 (13)
H21 0.052532 0.531409 0.984104 0.072*
C22 0.1968 (8) 0.54331 (14) 0.8300 (4) 0.0455 (11)
H22 0.067792 0.557170 0.778120 0.055*
C23 0.4082 (8) 0.56117 (14) 0.7993 (4) 0.0461 (11)
C24 0.5678 (8) 0.62515 (15) 0.7549 (5) 0.0514 (12)
C25 0.6822 (9) 0.61773 (16) 0.6608 (5) 0.0568 (13)
H25 0.641487 0.595571 0.605229 0.068*
C26 0.8593 (9) 0.64353 (17) 0.6489 (5) 0.0567 (13)
H26 0.942413 0.638636 0.585001 0.068*
C27 0.9177 (8) 0.67652 (15) 0.7292 (5) 0.0546 (12)
C28 0.7980 (9) 0.68237 (16) 0.8233 (5) 0.0583 (13)
H28 0.838036 0.704256 0.879907 0.070*
C29 0.6210 (9) 0.65700 (16) 0.8367 (5) 0.0580 (13)
H29 0.538072 0.661491 0.900879 0.070*
C30 1.1037 (9) 0.70433 (16) 0.7172 (5) 0.0566 (13)
C31 1.2100 (9) 0.73339 (16) 0.8031 (5) 0.0567 (13)
H31 1.178360 0.738967 0.882579 0.068*
C32 1.3649 (9) 0.75133 (16) 0.7479 (5) 0.0569 (13)
C33c 1.536 (2) 0.7819 (4) 0.7905 (9) 0.053 (2)
C33Ad 1.522 (10) 0.7853 (18) 0.764 (4) 0.053 (2)
C34c 1.555 (7) 0.8040 (13) 0.898 (3) 0.088 (4)
H34c 1.459063 0.801682 0.956729 0.105*
C34Ad 1.665 (6) 0.8005 (13) 0.690 (4) 0.0685 (8)
H34Ad 1.647914 0.801054 0.603230 0.082*
C35c 1.744 (2) 0.8314 (4) 0.9050 (8) 0.088 (3)
H35c 1.785017 0.850075 0.971227 0.105*
C35Ad 1.850 (6) 0.8157 (14) 0.781 (4) 0.068 (2)
H35Ad 2.002047 0.812142 0.774832 0.082*
C36c 1.8582 (16) 0.8286 (3) 0.8104 (9) 0.068 (2)
H36c 1.986900 0.844258 0.802902 0.082*
C36Ad 1.776 (9) 0.8354 (18) 0.875 (4) 0.088 (3)
H36Ad 1.842978 0.858810 0.918084 0.105*
N1 1.1896 (8) 0.70468 (17) 0.6161 (5) 0.0732 (14)
N2 0.1935 (6) 0.49881 (12) 0.7985 (3) 0.0452 (9)
H2D 0.193163 0.495897 0.716751 0.054*
H2E 0.069003 0.486892 0.818347 0.054*
H2F 0.316106 0.486247 0.840876 0.054*
O4 0.5799 (6) 0.54281 (10) 0.8032 (3) 0.0584 (9)
O5 0.3799 (5) 0.60135 (10) 0.7698 (3) 0.0551 (9)
O6 1.3588 (7) 0.73483 (13) 0.6341 (4) 0.0720 (11)
S2c 1.7380 (3) 0.79261 (7) 0.7063 (2) 0.0685 (8)
S2Ad 1.541 (7) 0.8101 (13) 0.902 (3) 0.088 (4)
C37 0.8652 (11) 0.4357 (2) 1.0357 (5) 0.0684 (16)
C38 0.7152 (8) 0.44687 (14) 0.9148 (4) 0.0445 (10)
F1 0.8156 (8) 0.39861 (15) 1.0728 (5) 0.1183 (16)
F2 1.0775 (6) 0.43516 (17) 1.0297 (4) 0.1082 (15)
F3 0.8407 (10) 0.4616 (2) 1.1223 (4) 0.146 (2)
O7 0.8143 (5) 0.45581 (11) 0.8292 (3) 0.0523 (8)
O8 0.5164 (6) 0.44606 (12) 0.9170 (4) 0.0676 (10)
C39 0.0802 (9) 0.53702 (15) 0.4982 (5) 0.0510 (12)
C40e 0.137 (3) 0.5637 (6) 0.3935 (16) 0.088 (3)
C40Af 0.104 (4) 0.5605 (7) 0.3812 (18) 0.088 (3)
F4e 0.168 (3) 0.6030 (3) 0.4273 (15) 0.128 (6)
F4Af 0.315 (4) 0.5707 (10) 0.380 (2) 0.156 (12)
F5e −0.016 (3) 0.5623 (9) 0.2970 (15) 0.169 (8)
F5Af −0.025 (5) 0.5927 (6) 0.3650 (18) 0.153 (9)
F6e 0.323 (3) 0.5543 (6) 0.3565 (15) 0.122 (7)
F6Af 0.043 (4) 0.5376 (6) 0.2848 (14) 0.133 (7)
O9 0.2496 (6) 0.52251 (11) 0.5625 (3) 0.0568 (9)
O10 −0.1136 (7) 0.53458 (13) 0.5136 (5) 0.0803 (12)
  1. aOccupancy: 0.932 (4), boccupancy: 0.068 (4), coccupancy: 0.797 (8), doccupancy: 0.203 (8), eoccupancy: 0.55 (2), foccupancy: 0.45 (2).

1 Source of materials

At first, 4-(5-(cyclopenta-1,3-dien-1-yl)isoxazol-3-yl)phenol (0.25 g, 1 mmol) and 2-amino-3-methylbutyric acid (0.38 g, 2 mmol) were stirred well with 10 mL of dichloromethane at room temperature for 8 h. After the reaction, 20 mL of water was added into the resulting mixture. The mixture was extracted with dichloromethane (10 mL × 3). Afterwards, the extract was washed with saturated sodium chloride solution, dried over anhydrous MgSO4 and concentrated to obtain the crude product. The crude product was purified by recrystallization using ethyl acetate to obtain the target compound 4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl valinate. Finally, the target compound (20.0 mg, 0.06 mmol) was dissolved in the mixed solvent of acetone (5 mL) and trifluoroacetic acid (0.01 mL). The solution was filtered and placed in a vial. The crystals were obtained by slow evaporation of the solution at 26 °C within 7 days.

2 Experimental details

Using Olex2 [2], the structure was solved with the XM [3] structure solution program using Dual Space and refined with the XL [4] refinement package.

3 Comment

Isoxazole compounds occupy a significant position in the pesticide market. They have excellent biological activities in weeding [5], pest control [6], and antifungal [7]. Meanwhile, researchers were also conducting in-depth studies on the structures of isoxazoles. For instance, the X-ray crystal structures of copper (II)-isoxazole binary complexes [8], the structures of fluorescent biaryl-substituted isoxazoles [9], the structures of 2-nitroimidazole-3,5-disubstituted isoxazole compounds based on benznidazole [10] and so on. However, there are few studies on the isoxazole structure containing valine molecules.

The asymmetric unit of the title structure contains two organic cations and two trifluoroacetic acid molecules. It indicates that the hydrogen bonding interactions play an important role in the crystal structure. Two cations firstly interact with each other to form a dimer by a pair of N–H⋯O [N2–H2d⋯O2, length 2.989(5) Å, angle 124.9°] hydrogen bonds. At the same time, one cation and one trifluoroacetic acid link with each other by N–H⋯O [N3–H3a⋯O10, length 2.728(6) Å, angle 164.1°]. The other cations also link with each other by N–H⋯O [N2–H2d⋯O9, length 2.799(5) Å, angle 146.8°], forming a stable triangular area finally generating a 2-dimensional hydrogen-bonded layer. All bond lengths and angles are within a reasonable range [11].


Corresponding authors: Junkai Li, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025 P.R. China, E-mail: ; and Zhigang Zeng, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100 P.R. China, E-mail:

Funding source: Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education

Award Identifier / Grant number: (KF202106)

Funding source: Natural Science Foundation of Hubei Province of China

Award Identifier / Grant number: (No. 2022CFB008)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was financially support by the Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education (KF202106) and Natural Science Foundation of Hubei Province of China (No. 2022CFB008).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Ponnuswamy, M. N., Gromiha, M. M., Sony, S. M. Conformational aspects and interaction studies of heterocyclic drugs. Top. Heterocycl. Chem. 2006, 3, 81–147.10.1007/7081_027Search in Google Scholar

6. Donald, A. P., Stanislav, A. B., Svetlana, M. B., Kumar, E. V. K. S., Lombardy, R. J., Jones, S. K., Bridges, A. S., Zhirnov, O., Hall, J. E., Wenzler, T., Brun, R., Tidwell, R. R. Synthesis and in vitro antiprotozoal activities of dicationic 3,5-diphenylisoxazoles. J. Med. Chem. 2007, 50, 2468–2485; https://doi.org/10.1021/jm0612867.Search in Google Scholar PubMed

7. Shahare, H. V., Amrutkar, R. D. Synthesis, characterization and antimicrobial activity of diphenylamino isoxazoline derivatives. Asian J. Pharm. 2018, 8, 148; https://doi.org/10.5958/2231-5691.2018.00026.6.Search in Google Scholar

8. Kumar, M. P., Ayodhya, D., Rambabu, A., Shivaraj Synthesis, characterization, X-ray crystal structure, antioxidant, antimicrobial, and DNA binding interaction studies of novel copper (II)-isoxazole binary complexes. Results Phys. 2023, 5, 100846; https://doi.org/10.1016/j.rechem.2023.100846.Search in Google Scholar

9. Deden, T., May, L., Reiss, G. J., Müller, T. J. Rapid sequentially palladium catalyzed four-component synthesis of novel fluorescent biaryl-substituted isoxazoles. Catalysts 2020, 10, 1412; https://doi.org/10.3390/catal10121412.Search in Google Scholar

10. Carvalho, D. B., Costa, P. A. N., Portapilla, G. B., das Neves, A. R., Shiguemoto, C. Y. K., Pelizaro, B. I., Silva, F., Piranda, E. M., Arruda, C. C. P., Gaspari, P. D. M., Cardoso, I. A., Luccas, P. H., Nonato, M. C., Lopes, N. P., de Albuquerque, S., Baroni, A. C. M. Design, synthesis and antitrypanosomatid activity of 2-nitroimidazole-3, 5-disubstituded isoxazole compounds based on benznidazole. Eur. J. Med. Chem. 2023, 260, 115451; https://doi.org/10.1016/j.ejmech.2023.115451.Search in Google Scholar PubMed

11. Wu, S., Peng, L., Zhou, P., Zeng, Z. The crystal structure of 1,2-bis((4-methoxyphenyl)ethynyl)benzene, C24H18O2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 229–231; https://doi.org/10.1515/ncrs-2019-0593.Search in Google Scholar

Received: 2023-10-10
Accepted: 2023-12-30
Published Online: 2024-01-15
Published in Print: 2024-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2023-0443/html
Scroll to top button